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Abstract 

 

Campylobacteriosis in humans due to Campylobacter jejuni and C. coli is the most common 

bacterial diarrhoeal disease worldwide. Control measures currently focus on the reduction of 

Campylobacter in chickens, as 60-80% of human cases can be attributed to the poultry 

reservoir as a whole. However, C. jejuni and C. coli have also been reported in a range of 

livestock and wildlife species, including live pheasants. Pheasants reach the consumer’s table 

as a by-product of the shooting industry. Approximately 3.5 million game birds are shot in 

Scotland every year; however, only 700,000 (20%) are received at Scottish Approved Game 

Handling Establishments (AGHEs) for veterinary inspection. Despite this volume of wild 

game entering the food chain, there is a lack of information concerning the risk of 

campylobacteriosis in humans arising from consumption of wild game meat and the role wild 

game birds may have as a reservoir of infection. 

This study’s aims were to determine the prevalence of Campylobacter in wild game pheasants 

processed in AGHEs in Scotland, to identify the main sequence types (STs) present and to 

evaluate their impact on public health. 

Scotland was divided into five geographical regions. Five sampling sites and 13 estates were 

selected to collect a total of 287 caecal and 59 skin samples from pheasant carcases during the 

hunting season 2013/2014. Laboratory isolation of Campylobacter was performed using 

standard culture methods and positive caecal samples were subjected to PCR and High 

Throughput Multi Locus Sequence Typing (HiMLST). 

36.5% of 287 caecal samples (CI 13.9% - 61.2%) were Campylobacter positive while all 59 

skin samples were negative. Using PCR, C. coli and C. jejuni accounted for 62.7% and 37.3% 

of positive samples tested (n=99), respectively. Nineteen STs of Campylobacter were 

recovered from MLST (n=80). Sequence type 828 (n=19) was the most common, followed by 

ST827 (n=12) and ST19 (n=7).  

Overall, the STs found in pheasants are more common in livestock than chickens, raising the 

possibility of cross-infection between pheasants, cattle and sheep in the field. STs 827 and 19 

are common in humans and primarily associated with livestock, however, ST828 is primarily 

chicken-associated so this also implies direct involvement of poultry in the transmission of 

infection to pheasants. 
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This study suggests that wild game birds are a possible source of Campylobacter infection in 

humans and helps in the understanding of risk to humans of pheasant meat consumption. 

 

Lay Summary 

 

Campylobacteriosis in humans due to C. jejuni and C. coli is the most common bacterial 

diarrheal disease worldwide. Control measures currently focus on the reduction of 

Campylobacter in chickens, as 60-80% of human cases can be attributed to the poultry 

reservoir as a whole. However, C. jejuni and C. coli have also been reported in a range of 

livestock and wildlife species, including live pheasants. Pheasants reach the consumer’s table 

as a by-product of the shooting industry. Approximately 3.5 million game birds are shot in 

Scotland every year; however only 700,000 are received at Scottish Approved Game Handling 

Establishments (AGHEs) for veterinary inspection. Despite this volume of wild game entering 

the food chain, there is a lack of information concerning the risk of campylobacteriosis in 

humans arising from consumption of wild game meat and the role wild game birds may have 

as a reservoir of infection. 

This study’s aims were to determine the prevalence of Campylobacter in wild game pheasants 

processed in AGHEs in Scotland, to identify the main sequence types (ST) present and to 

evaluate their impact on public health. 

Scotland was divided into five geographical regions, five sampling sites and thirteen estates 

were selected to collect a total of 287 caecal and 59 skin samples from pheasant carcases 

during the hunting season 2013/2014. Laboratory isolation of Campylobacter was performed 

using standard culture methods and positive caecal samples were subjected to PCR and High 

Throughput Multi Locus Sequence Typing (MLST). 

36.5% of 287 caecal samples were Campylobacter positive while all 59 skin samples were 

negative. The STs found in pheasants are common in livestock and chickens, raising the 

possibility of cross-infection between pheasants, chickens, cattle and sheep in the field. 

This study suggests that wild game birds are a host of Campylobacter and a potential risk to 

humans through consumption of pheasant meat. 
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Chapter 1 Introduction 

 

1.1 Campylobacter 

Campylobacter is a genus of Gram-negative spirally curved rods that comprises 15 species, 

12 of which are associated with human disease (Lastovica and Skirrow, 2000).  They have a 

single polar flagellum at one or both ends of the cell and are strictly microaerophilic, requiring 

between 3 and 6% of oxygen and 10% of carbon dioxide to grow. They are catalase and 

oxidase positive and will not grow at temperatures below 30°C, or in the presence of 3.5% of 

NaCl, or at a pH below 4.9 (Park, 2002). The optimum temperature for growth is 42°C at a pH 

range of 5.5 to 8.0 (Park, 2002). 

Campylobacter species are commonly found in nature and can contaminate drinking water but 

are more often associated with warm-blooded animals as commensal gastrointestinal 

organisms in livestock, domestic and wild animals or as pathogens in humans (EFSA, 2012). 

They do not generally cause disease in animals, but C. fetus fetus can be an abortifacient agent 

in cattle and sheep and may occasionally cause serious systemic disease in humans.  

The two species of primary importance to public health are C. jejuni and C. coli, responsible 

for over 95% of Campylobacter infections in humans (Park, 2002). Campylobacter jejuni and 

C. coli can readily contaminate various foodstuffs, including meat, raw milk and dairy 

products, and, less frequently, fish and fishery products, mussels and fresh vegetables. Among 

sporadic human cases, contact with live poultry, consumption of poultry meat, drinking water 

from untreated water sources, and contact with pets and other animals have been identified as 

the major sources of infections (EFSA, 2013). Cross-contamination during food preparation 

has also been described as an important transmission route. Raw milk and contaminated 

drinking water have been implicated in both small and large outbreaks (EFSA, 2013). Other 

Campylobacter species, such as C. upsaliensis, C. sputorum, C. hyointestinalis and C. lari are 

present in mammals and birds in the UK, but are not generally considered of public health 

importance (DEFRA, 2013). 

1.1.1 Poultry as reservoir of human campylobacteriosis 

Poultry are recognised as the most important reservoir of Campylobacter infection for humans 

(Park, 2002). They can contract infection from their environment, via contaminated water or 

following breaches of biosecurity (e.g. poor cleaning and disinfection of poultry houses). 

Infection in poultry is mainly through the oral-faecal route or via vertical transmission from 
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parent flocks (Humphrey et al., 2007). Campylobacter spp. mainly colonise the caeca, large 

intestine and cloaca of poultry; in particular, they target the intestinal mucous layer coating 

the crypts in these locations (Beery et al., 1988). This is a highly specialised environment but 

C. jejuni has evolved features that enhance bacterial colonisation of this restricted ecological 

niche, in particular: 

• Bacterial motility: This is necessary for the intestinal colonisation of animals by 

Campylobacter spp. since non-motile mutants are incapable of establishing infection 

(Morooka et al., 1985). The polar flagellum and the spiral shape of Campylobacter 

spp. give the cells a typical rapid, darting, corkscrew-like pattern of motility that 

enables them to colonise competitively the mucous layer of the gastrointestinal tract 

of animals. This environment will otherwise rapidly paralyse other motile rod-shaped 

bacteria (Wassenaar and Blaser, 1999).  

• Chemotactic mechanisms: These allow Campylobacter spp. to be attracted to mucin 

and, more specifically, fucose, a constituent of mucin, and consequently colonise the 

mucous layer of the gastrointestinal tract of animals (Hugdahl et al., 1988). 

The main factors that enhance the role of poultry as the main natural host for Campylobacter 

are: 

• The body temperature of poultry, around 41°C, is very close to the optimal growth 

temperature of the organism (42°C) and differs considerably from that encountered in 

the mammalian intestinal tract (37 to 39°C) (Park, 2002). 

• The ability of C. jejuni to produce the outer membrane protein CadF that allows the 

binding of the bacterium to fibronectin that is present on the gastrointestinal tract of 

chickens (Ziprin et al., 1999). 

1.1.2 Pathogenesis of human disease 

Much of the world’s poultry meat production is contaminated with Campylobacter spp. and 

this is reflected in the reportedly high isolation rate for these pathogens in poultry products 

sold in major supermarket outlets (Park, 2002; EFSA, 2013). In the USA, 69% of chickens 

bought from a local supermarket were found to be contaminated with C. jejuni (Willis and 

Murray, 1997). In the UK, 70% of chickens tested positive for the presence of Campylobacter 

in a year-long survey published in November 2014, with 18% of them harbouring loads greater 

than 104 colony forming units per gram (CFU/g) (FSA, 2014). Campylobacter jejuni infection 

in humans has been associated with handling and eating of raw or undercooked poultry, a risk 
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that is enhanced by the widespread distribution of infection in the poultry meat industry and 

the high levels of poultry consumption meat per-capita (EFSA, 2010). 

Transmission of Campylobacter to humans is usually by the consumption of contaminated 

food or water. In particular, a scientific opinion published by EFSA in 2010 indicated that 

“Handling, preparation and consumption of broiler meat may account for 20% to 30% of 

human cases of campylobacteriosis, while 50% to 80% may be attributed to the poultry 

reservoir as a whole” (EFSA, 2010). 

On the basis of experimental evidence, at least two mechanisms have been identified by which 

Campylobacter Spp. induce gastrointestinal disease in humans. These involve intestinal 

adherence and toxin production, and bacterial invasion and proliferation within the intestinal 

mucosa (Park, 2002). 

Campylobacter jejuni strains produce at least one cytotoxin, the cytolethal distending toxin 

(CDT) (Pickett, 2000). From in-vitro experiments it has been hypothesised that if the CDT 

toxin is produced in the presence of rapidly dividing and differentiating intestinal crypt cells, 

it could lead to loss of function or erosion of the epithelial layer, ultimately leading to diarrhoea 

(Pickett et al., 1996; Purdy et al., 2000). This is not the only way Campylobacter spp. express 

their pathogenic effect in humans and it is possible that additional toxigenic activities are 

present in some strains of C. jejuni. This may explain why disease manifestation can differ 

with strain (Park, 2002). Equally, it is also possible that certain strains of C. jejuni or C. coli 

may not be capable of causing disease in humans since the relative distributions of genotypes 

from poultry and humans are not necessarily the same (Korolik et al., 1995; Clow et al., 1998). 

In this context, the determination of the sequence type of C. jejuni and C. coli from different 

animal sources can give an indication of their potential to cause disease in humans. 

The infective dose of these bacteria is generally low (500 to 800 CFU) (Janssen et al., 2008) 

and the average incubation period in humans ranges from one to seven days (Blaser et al., 

1987: Wood et al., 1992). Patients may experience mild to severe symptoms, most common 

ones including watery (sometimes haemorrhagic) diarrhoea, abdominal pain, fever, headache 

and nausea (Humphrey et al., 2007). Usually infections are self-limiting and last only between 

5 and 7 days. Extra-intestinal infections or post-infection complications, such as reactive 

arthritis and neurological disorders, can also occur. Campylobacter jejuni has become the most 

commonly recognised antecedent cause of Guillain–Barré syndrome, a polio-like form of 

paralysis that can result in respiratory failure, severe neurological dysfunction and even death 

(Humphrey et al., 2007). Not all strains of C. jejuni seem capable of causing these sequelae 
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and there are even differences between those strains associated with the two syndromes of 

respiratory failure and neurological dysfunction (Takahashi et al., 2005). 

1.1.3 Campylobacter as a foodborne pathogen 

As described in section 1.1 Campylobacter spp. possess strict growth requirements and are 

sensitive to environmental stress, making them appear to be unlikely foodborne pathogens 

compared to salmonellae and Escherichia coli, organisms that are considered to be relatively 

robust and capable of surviving common food processing practices such as refrigeration and 

cooking (Humphrey et al., 2007). Factors influencing Campylobacter survival in food, and 

therefore its pathogenicity to humans, are briefly explained below: 

Resistance to low temperature: The factor that limit the growth of Campylobacter spp. at low 

temperatures is currently unknown. Many bacteria produce characteristic cold shock proteins 

that allow them to replicate at temperatures below their optimum growth temperature 

(Phadtare et al., 1999). An analysis of the C. jejuni genome sequence suggests that 

Campylobacter spp. do not produce this type of cold shock protein (Parkhill et al., 2000). This 

may contribute to explain why these pathogens fail to grow at temperatures below 30°C. 

Although at this temperature replication is not possible, the organism is still fully motile and 

retains its aptitude to move towards more favourable environments (Hazeleger et al., 1998). 

At lower temperatures however, viability is rapidly lost and, although Campylobacter spp. can 

still be recovered from frozen meats and poultry products (Fernandez and Pison, 1996), 

freezing significantly reduces its survival (Humphrey and Cruickshank, 1985; Harrison et al., 

2013). Several factors, like ice nucleation and dehydration, have been associated with the 

freeze-thaw induced injury of bacterial cells, and oxidative stress has also been shown to be 

detrimental to Campylobacter survival (Stead and Park, 2000). 

Resistance to oxidative stress: Exposure to oxygen is inevitable for bacterial pathogens but it 

leads to the formation of reactive oxygen intermediates (ROIs), such as superoxide radicals. If 

these highly reactive agents are not deactivated, they can induce lethal damage to nucleic acids, 

proteins and cell membranes. As a response against ROIs excesses, many bacterial cells are 

able to induce the synthesis of anti-oxidant enzymes. Although it is possible to grow 

Campylobacter spp. in the presence of air under certain conditions (Jones et al., 1993), these 

organisms are generally considered to be microaerophilic, indicating an intrinsic sensitivity 

towards oxygen and its reduction products. Thus, cellular defences against the damaging 

effects of oxidative stress play an important role in the survival of these bacteria during 

exposure to air. Superoxide dismutase (SOD) is an enzyme that, amongst others, plays a key 
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role in the oxidative defence system of Campylobacter (Purdy and Park, 1994; Pesci et al., 

1994; Purdy et al., 1999). The deleterious effects of exposure to superoxide radicals are 

counteracted by the SOD that both C. jejuni and C. coli possess (Purdy and Park, 1994; Pesci 

et al., 1994). SOD-deficient Campylobacter mutants are less able to survive on poultry meat 

or freezing, suggesting that SOD is an important factor of Campylobacter survival in food 

(Purdy et al., 1999; Stead and Park, 2000). 

Resistance to heat treatment: Although thermophilic in growth requirement, Campylobacter 

spp. are sensitive to heat and readily inactivated by pasteurization and domestic cooking 

processes (Humphrey et al., 2007). Bacterial cells exposed to temperatures above that which 

is optimal for growth generally respond by producing a heat shock response involving the 

synthesis of proteins able to act as ATP-dependent proteases (Park, 2002). These contribute to 

the degradation or stabilization of abnormal proteins and this is considered to be an important 

homeostatic mechanism that enables bacterial cells to survive heating and a variety of 

environmental stresses (Arsene et al., 2000). Campylobacter spp. are able to produce a heat 

shock response similar to that observed in other bacteria, however, specific heat shock 

regulatory genes that are present in other bacteria are absent from C. jejuni (Parkhill et al., 

2000).  

Campylobacter in foodstuff of animal origin 

Campylobacter spp. are commonly found on red meat and dairy products as well as on poultry 

meat as shown in Table 1.1.  

 

Table 1.1: (adapted from Humphrey et al., 2007): Isolation of Campylobacter spp. from raw 
foods and food producing animals. 

 

Food or Animal Tested  Mean % positive samples  % Range 
Chicken flocks 58.7 2.9-100 
Chicken at retail 57.4 23-100 
Turkey flocks 78.0 20-100 
Turkey at retail 47.8 14-94 
Dairy cows 30.0 6-64 
Raw milk 3.2 0-9.2 
Beef cattle 62.1 42-83 
Beef at retail 2.7 0-9.8 
Sheep 31.1 18-44 
Lamb at retail 6.0 0-12.2 
Pigs 61.0 50-69 
Pork at retail 2.0 0-5.1 
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Although red meat animals can be heavily contaminated with Campylobacter spp. on arrival 

at the abattoir, due to increased excretion of bacteria subsequent to the transport stress (Beach 

et al., 2002), the level of contamination at retail is substantially lower than poultry meat 

possibly due to the longer time red meat spends in chill before entering the food chain and 

possibly related to the deleterious effect of dehydration on Campylobacter (Humphrey et al., 

1995). A dry environment also appears to be the reason why Campylobacter spp. doesn’t 

survive for long on egg shells (Humphrey et al., 2007). Milk pasteurisation can easily destroy 

Campylobacter contamination (Humphrey et al., 2007). 

 

1.2 Epidemiology of campylobacteriosis in humans 

Campylobacter was first confirmed as a cause of human illness in 1972 (Dekeyser et al., 1972) 

and by 1986 it was recognised as the most commonly reported gastrointestinal pathogen in the 

UK, ahead of Salmonella spp. (Skirrow, 1987). The species of greatest public health 

importance are C. jejuni and C. coli (thermophilic Campylobacter spp.) that account for over 

95% of Campylobacter infections in humans (Park, 2002). While in livestock and wild animals 

Campylobacter spp. rarely cause disease, in humans they are the most common cause of 

bacterial gastrointestinal infection worldwide (Humphrey et al., 2007). According to WHO 

estimates, Campylobacter-related illness affects around 1% of populations in developed 

countries every year (WHO, 2013).  

1.2.1 Campylobacteriosis in humans in the EU 

In 2013, Campylobacter was the most commonly reported gastrointestinal bacterial pathogen 

in humans in the European Union (EU) and has been so since 2005 (EFSA and ECDC, 2013). 

The number of confirmed cases of human campylobacteriosis was 214,779 with an EU 

notification rate of 64.8 per 100,000 population, which was at the same level as in 2012 (Figure 

1.1). 
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Figure 1.1: ( from EFSA and ECDC, 2013): Reported notification rates of zoonoses in 
confirmed human cases in the EU, 2013. 

 

In 2013, 414 Campylobacter outbreaks were reported in the EU. The sources of the outbreaks 

were, in decreasing order of importance reported as, broiler meat, mixed or unspecified poultry 

meat, milk and mixed food (EFSA and ECDC, 2013). 

Campylobacter spp. information was available for 48% of confirmed cases reported in the EU. 

Of these, 81% were reported to be C. jejuni, 7% C. coli, 0.2% C. lari, 0.1% C. foetus and 0.1% 

C. upsaliensis. Other Campylobacter spp. accounted for 12% of human cases but the large 

majority of those cases were reported at the national level as: “C. jejuni / C. coli not 

differentiated” (EFSA and ECDC, 2013). 

A seasonal trend can be identified in confirmed campylobacteriosis cases reported in the EU 

in 2009-2013, with peaks in the summer months. The 12-month moving average was fairly 

stable over the 5-year period with no statistically significant increase or decrease in trend when 

analysed by month (p=0.334 with linear regression) (Figure 1.2) (EFSA and ECDC, 2013). 
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Figure 1.2: ( from EFSA and ECDC, 2013): Seasonal trend in reported confirmed cases of 
human campylobacteriosis in the EU, 2009-2013. 

 

1.2.2 Campylobacteriosis in humans in the UK 

Foodborne disease in the UK affects about 1 million people with 19,000 hospitalisations and 

500 deaths at an approximate cost of £1.5 billion each year (FSA, 2011). Campylobacteriosis 

accounts for a third of the total cost to the UK (Humphrey, 2007). Campylobacter spp. are the 

most commonly reported bacterial cause of Infectious Intestinal Disease in the UK (FSA, 

2012).  

In 2012, there were 72,592 laboratory reports of Campylobacter in the UK. This is an increase 

of 0.5% from 2011. However, whilst reports increased by 3% in Northern Ireland and 0.5% in 

England and Wales, they fell by 0.3% in Scotland (Table 1.2). 

 

Year England & Wales  Scotland  Northern Ireland  UK 

2010 62,686 6,601 1,040 70,327 

2011 64,726 6,365 1,175 72,266 

2012 65,032 6,349 1,211 72,592 

Table 1.2: ( from Zoonoses report UK, 2012): Number of Campylobacter reports in humans in 
the UK, 2010-2012. 
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The Second Study of Infectious Intestinal Disease in the Community established that the ratio 

of unreported to reported human Campylobacter infections is one in nine cases (FSA, 2012). 

This suggests that there were approximately 650,000 Campylobacter cases in the UK in 2012. 

Seven foodborne Campylobacter outbreaks were reported in the UK in 2012, six of which 

were associated with the consumption of chicken liver and chicken liver parfait, and one was 

associated with the consumption of lamb (DEFRA, 2013). 

During 2014 in Scotland, the Health Protection Scotland (HPS) reported 6,636 laboratory 

cases of Campylobacter in humans, an increase of 472 (7.7%) compared to 2013 and the 

highest number of Campylobacter cases reported in the past ten years (Figure 1.3) (HPS, 

2015). 

 

Figure 1.3:  (from HPS Weekly Report, 2015): Laboratory isolates of Campylobacter reported 
to HPS 2004-2014. 

 

During the same year, in mainland Scotland, the annual incidence rates of Campylobacter 

ranged from 81.2 to 162.8 per 100,000 population (HPS, 2015). However, there are usually 

consistent regional differences in the reported incidences of campylobacteriosis cases in 

humans where Northern islands, the Eastern coast of the central belt of Scotland and the 

Southwest have the higher notification rates (Figure 1.4). 
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Figure 1.4:  (from HPS Weekly Report, 2015): Rates per 100,000 population of reports of 
Campylobacter to HPS 2014 (2013). (BR=Borders, FV=Forth Valley, GR=Grampian, 
GGC=Greater Glasgow & Clyde, HG=Highland, LN=Lanarkshire, LO=Lothian, OR=Orkney, 
TY= Tayside, WI Western Isles, AA=Ayrshire & Arran, DG= Dumfries & Galloway, FF=Fife 
and SH=Shetland) 

 

1.2.3 Final remarks on Campylobacter epidemiology in humans 

Most human Campylobacter infections appear to be sporadic as only a few household or 

localised outbreaks are identified each year in the UK (O’Brien et al., 2002). Some attempts 

have been made in the literature to try to correlate seasonality, age of people affected, and 

peaks of human disease with carriage of Campylobacter in poultry and other farm animals, 

but no definitive conclusions have been reached (Humphrey et al., 2007). 

A characteristic of Campylobacter epidemiology in humans is its marked seasonality since, in 

the UK and other European countries, incidence peaks in late spring/early summer (FSA, 

2009). In NorthWest England surveillance of campylobacteriosis indicated a peak of cases in 
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May (Sopwith et al., 2003). In Scotland, the annual peak is in late June-early July (Miller et 

al., 2004). There are discordant reports in the literature describing a possible correlation 

between ambient temperature and number of human cases but the general consensus is that 

there may be a weak association (Humphrey et al., 2007).  

Data from England and Wales from 1990 to 2007 indicate that the proportion of cases reported 

for patients of different age groups has slowly changed over time, with a general decline in 

campylobacteriosis in young children under the age of 9 years, while older groups, in particular 

the over 60 year olds, have experienced an increase in infection over the last 10 years (Gillespie 

et al., 2009). Strachan (2009) reported that in the Northeast of Scotland Campylobacter 

infection in young children living in rural areas was greater than in urban areas and it was 

linked to the direct contact with farm animals and contaminated water rather than consumption 

of poultry meat (Strachan et al., 2009). In the same study, the foodborne route was considered 

to be of primary importance in Campylobacter infection in the adult population rather than 

contact with animals and water (Strachan et al., 2009). 

The peak in human cases has been related to the fluctuations in carriage in poultry and other 

food-producing animals. Some studies reported that Campylobacter carriage rates in broiler 

chicken flocks (Wallace et al., 1997) and dairy cattle (Stanley et al., 1998a) peak in the spring 

and late summer, in contrast to lamb and beef cattle where such marked seasonal variation in 

carriage rates have not been observed (Stanley et al., 1998b). However, available evidence 

does not consistently support this hypothesis and the level of infection in humans and poultry 

seems to be associated with what Meldrum (2005) defines as “a common, but unidentified, 

environmental source” (Meldrum et al., 2005). 

 

1.3 Epidemiology of campylobacteriosis in animals 

Thermotolerant Campylobacter spp. are widespread in nature (Kwan et al., 2008a). The 

principal reservoirs are the alimentary tract of wild and domesticated birds and mammals. 

These bacteria are prevalent in food-producing animals such as poultry, cattle, pigs and sheep, 

companion animals (including cats and dogs), wild birds and in environmental water sources 

(Humphrey et al., 2007). Animals acquire infection mainly through the faecal-oral route from 

the contaminated environment and rarely show signs of disease caused by these organisms 

(Blaser et al., 1980). Campylobacter infection in companion animals will not be covered in 

this thesis and the focus will be on food producing animals and wild game birds. 
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1.3.1 Campylobacter infection in food producing animals 

Campylobacter jejuni and C. coli are commonly found in cattle, sheep and pigs (Stanley and 

Jones, 2003; Nielsen, 2002; Payot et al., 2004; Boes et al., 2005) as shown in Table 1.1. 

Intestinal carriage of Campylobacter in cattle can range from 0.8 to 89% and in lambs can be 

as high as 91% (Stanley and Jones, 2003). This marked variation in the carriage of 

Campylobacter in the farm animal gastrointestinal tract is not well understood and many 

factors can contribute to it. There may be differences in the level of immunity or 

Campylobacter spp. may not be natural gut commensals in these animals, in contrast to E. coli 

(Humphrey et al., 2007). Most cattle and sheep are reared in outdoor systems where there will 

be frequent contact with the external environment and they may become infected with 

Campylobacter in those circumstances (Schaffner et al., 2004); however infection can also be 

sustained within the herd by cycling between individuals (Humphrey et al., 2007). 

In 2000, Campylobacter infection in poultry was estimated to reach 60% of broiler flocks 

slaughtered in the UK (Berrang et al., 2000). A more recent analysis of the EU baseline survey 

of the prevalence of Campylobacter in broiler batches estimated that the UK prevalence in 

broilers at slaughter (based on caecal contents) was 75.3% (EFSA, 2008). The prevalence of 

Campylobacter carriage in poultry during the summer months can reach 100% (DEFRA, 

2009). As mentioned in Section 1.1.1, poultry can contract infection from their environment, 

via contaminated water or following breaches of biosecurity (e.g. poor cleaning and 

disinfection of poultry houses). Infection in poultry is mainly through the oral-faecal route or 

via vertical transmission from parent flocks (Humphrey et al., 2007). Chickens that are reared 

under extensive (free-range) systems are more likely to be Campylobacter-positive than 

housed animals (Heuer et al., 2001). 

1.3.2 Campylobacter infection in wild game birds 

Wild game birds, and in particular pheasants and partridges, are commonly reared in outdoor 

farms and may be exposed to Campylobacter infection from the environment and/or at a later 

stage when they are released in the field where they may share their immediate surroundings 

with other livestock (Dampney, 2009; Heuer et al., 2001).  In live wild game birds the presence 

and prevalence of C. jejuni and C. coli has been reported in both pheasants and partridges from 

studies conducted in Germany, Russia, Italy and the Czech Republic (Atanassova and Ring, 

1999; Stern et al., 2004; Dipineto et al., 2008a; Dipineto et al., 2009; Nebola et al., 2007) but 

current scientific knowledge is still scarce. One study conducted on live healthy pheasants 

sampled on a pheasant farm in the South of Italy reported a prevalence of 43.3% (n=240) with 
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C. coli and C. jejuni found in 100% and 13.5% of the positive samples taken, respectively 

(Dipineto et al., 2008a). In the same study, the prevalence was significantly higher in adult 

pheasants compared to younger pheasants. This finding is consistent with Campylobacter spp. 

infection in chickens where younger birds in the second to the fourth week of life are less 

likely to be affected (Newell & Fearnley, 2003; Shreeve et al., 2000). There was no significant 

gender difference (Dipineto et al., 2008a). In another study Dipineto (2008b) reported a 

prevalence of 86.7% (n=60) from cloacal swabs of live farmed pheasants; all positive samples 

were identified as C. coli and 19.2% of positive samples were also positive for C. jejuni.  

A study from the Czech Republic reported isolation of Campylobacter spp. from 502 caecal 

samples collected from adult farmed and wild pheasants (n=302 farm / n=200 wild). The 

prevalence of Campylobacter spp. in the intestinal contents of pheasants from the farm was 

70.2% with 50.5% of isolates identified as C. coli and 41.4% as C. jejuni (Nebola et al., 2007). 

Farmed pheasants had a higher prevalence than birds shot in the wild (27.5% of cases) and 

this was linked to the fact that samples from wild pheasants were not taken immediately after 

they had been shot, while the samples from farmed pheasants were gathered within two hours 

of their death (Nebola et al., 2007). C. jejuni was more prevalent (58.2%) than C. coli (36.4%) 

in the wild birds. On the other end, studies from Germany and Russia reported an estimated 

prevalence of Campylobacter spp. in wild pheasants of 26% and 25% respectively 

(Atanassova and Ring, 1999; Stern et al., 2004). There are no data available in the literature 

on Campylobacter spp. intestinal carriage in pheasants. 

 

1.4 The game meat supply chain and microbiological hazards to public 

health 

1.4.1 Pheasants and the shooting industry 

Phasianus colchicus is the most common species of pheasant in the UK (ADAS, 2005). Males 

are striking, with chestnut, golden brown and black markings on the body and tail, a green 

head and red face. The female has paler brown, mottled plumage and is usually smaller than 

the male (Figure 1.5). 
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Figure 1.5 : Male pheasant on the left and female on the right (image from Meat Hygiene 
Service – Small Wild Game Training Course). 

 

Pheasants are not innate to Britain. As reported by Pennycott (2001): ”They originated in parts 

of Asia, such as the Himalayas, Manchuria, Korea, Vietnam and Japan. They were introduced 

to the British Isles in the distant past by the Romans or the Normans but were certainly present 

in Britain by the 14th century”. There have been more recent additions, introducing specific 

types and breeds for sport shooting. Pheasants like a habitat that includes woodland or copses 

and hedgerows. There is a resident population of approximatively 8 million wild pheasants in 

the UK across the whole of England, Scotland, Wales and Ireland, except for the far north and 

west of Scotland and on the very high ground in England and Wales (Dampney, 2009). 

Pheasants can be farmed for meat in a similar way to broiler chicken production although they 

are more difficult to rear intensively and are prone to welfare problems. Despite this, there are 

producers offering farm-reared partridge and pheasant meat that are more attractive to some 

restaurants and supermarket chains, compared to wild game meat, as there is no risk to diners 

of damaging their teeth on any shot left in the bird and also because they will be slaughtered 

in an approved abattoir, as normally happens for broilers (ADAS, 2005). 

Wild pheasant meat reaches the consumer’s table as a by-product of the shooting industry. 

Shooting is a sport that is worth approximately £1.6 billion to the UK economy and it is 

estimated that 600,000 people are involved in the provision of sporting shooting in the UK 

(PACEC, 2006). The vast majority of the income from shooting is gained from the actual 

sporting activity, itself worth £240 million in Scotland (PACEC, 2006). The meat from wild 

game species is thus a by-product of the shooting industry and the value of game birds sold is 

minimal.  The shooting industry focuses mainly on pheasants, partridges and grouse. Within 

the UK in 2004 approximately 15 million pheasants, 3.6 million pigeons, 2.6 million 

partridges, 970,000 ducks, 400,000 grouse, and 250,000 woodcock and snipe were shot. 

Within Scotland, up to 2 million pheasants, 500,000 pigeons, 370,000 partridges, 140,000 

ducks, 200,000 grouse, and 37,500 woodcock and snipe are shot per annum (PACEC, 2006). 
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1.4.2 Pheasant management on farm 

The pheasant shooting season closes at the end of January and approximatively 15 million 

pheasants are shot for sport in the UK each year (PACEC, 2006). This number of birds cannot 

be provided by the population of wild pheasants, of which there are approximately three 

million breeding birds each spring (Gibbons et al., 1993), so the numbers are supplemented 

by artificially reared pheasants. On average, four-fifths (83%) of all shooting providers rely 

on released pheasants or partridges (PACEC, 2006). It is a common practice for pheasant-

rearing sites to catch pheasants from the wild each year in February and March and transfer 

the birds to static or moveable breeding pens (Anon, 1993). Breeding pheasants will lay eggs 

from early March and the last eggs are placed in incubators in the middle of June. Incubation 

lasts 24 days. Hatching commences in the first week of May and finishes in the first week of 

July. Chicks will be transferred to brooder houses that provide heat, light and ventilation in 

controlled conditions. Heat is gradually reduced and space increased as the birds grow so that, 

by the time their feathers have developed, the birds can be given access to outside runs and 

become acclimatised to the outdoors. At 3 to 4 months old they will be mature enough to be 

released in the field until the shooting season starts at the beginning of October. Some 

gamekeepers by-pass this stage by buying birds at 6-8 weeks of age so they can be placed in 

outdoor release pens immediately. Others will buy at day-old and rear on. 35 million pheasants 

and 6.5 million partridges were reared and released for shooting in 2004 in the UK (PACEC, 

2006). 

1.4.3 Pheasant game meat processing and supply chain 

The hunting season for pheasants in England, Scotland and Wales extends from 1 October to 

1 February. In practice, most shoots do not actually commence shooting until 1 November as 

birds reared in Britain are not normally ready to shoot until the end of October. On the other 

hand commercial shoots will want to maximise the number of days shooting and are more 

likely to start at the beginning of October.  

Pheasant carcases from large shoots are usually collected in larders and then given to game 

dealers, consumed locally or sent to AGHEs.  

The EU Hygiene Regulations require that wild game meat for human consumption must be 

supplied to AGHEs and subjected to veterinary inspection (OJEU, 2004b), however some 

derogations to the legislation are in force in the UK that allows pheasants from small shoots 

to be consumed locally by hunters, beaters and local householders, including restaurants, 

butcher shops and pubs. Retailers that operate on a national level (e.g. supermarkets or 
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restaurants chains) can only source their game from AGHEs. Similarly, game bird carcases in 

feathers or “oven-ready” for the export market can only be sourced from AGHEs. A schematic 

representation of the pheasant game meat supply chain is shown in Figure 1.6. 

 

 

       Figure 1.6: Schematic representation of the pheasant game meat supply chain. 

 

Pheasant carcases delivered to AGHEs are stored in batches in intake chillers at a temperature 

below 4°C, waiting to be processed. The first step of the process is dry feather-plucking. 

Scalding of carcases; as used for broilers in poultry abattoirs, is not common practice for small 

wild game; however some AGHEs may immerse pheasants in hot wax after dry plucking to 

facilitate the removal of feathers. At this stage damaged carcases will proceed for breast and 

thigh meat removal and the rest of the carcass will be discarded. Well-presented carcases will 

usually be manually eviscerated and then packed as “oven-ready” product. Breast and thigh 

meat will be vacuum-packed in portions of different sizes according to customer 

specifications. “Oven-ready” product and breast meat can be stored in refrigerated conditions 

below 4°C or frozen to extend their shelf-life. 

1.4.4 Official controls in Approved Game Handling Establishments (AGHEs) and 

identification of microbiological hazards in wild game meat related to public health 

EU food hygiene legislation is applied across the UK and has been implemented in Scotland 

by The Food Hygiene (Scotland) Regulations 2006 that came into force on 11 January 2006 
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(SSI, 2006/3). This legislation includes the three EU food Hygiene Regulations that are: 

Regulation 852/2004 on basic hygiene requirements for production of foodstuffs (OJEU, 

2004a); Regulation 853/2004 laying down specific hygiene rules - these apply to food business 

operators producing food of animal origin (OJEU, 2004b); and, Regulation 854/2004 that 

relates to the organisation of official controls on products of animal origin intended for human 

consumption (OJEU, 2004c). The legislation considers the hunting of wild game as primary 

production but private domestic consumption of wild game is unregulated (OJEU, 2004a). 

However, the EU Hygiene Regulations also require that wild game meat for human 

consumption must be supplied to AGHEs for veterinary inspection and must be passed fit for 

human consumption (OJEU, 2004b). 

The British Association for Shooting and Conservation (BASC) estimates that 90% of the wild 

game birds shot in Scotland are supplied directly from the shooting estates to the AGHEs 

(SRUC, 2012). However, for the shooting season 2010/11, the Meat Hygiene Service (former 

executive agency of the Food Standards Agency) recorded a throughput of small game birds 

and ground game by Scottish AGHEs of approximately 700,000 (SRUC, 2012) which is 

actually a much smaller proportion (approximatively one fifth) of the estimated 3.5 million 

game birds shot annually. Game meat can be offered directly to consumers without veterinary 

inspection because of extensive derogations from the EC Hygiene Regulations that have been 

applied in the UK allowing the direct supply of game meat from hunters or retail outlets to the 

final consumer (SRUC, 2012). 

However, concerns are raised by the fact that more than two thirds of game bird meat reach 

the consumer’s table without veterinary inspection and without being passed fit for human 

consumption. A Veterinary Laboratory Agency report on a qualitative risk assessment of wild 

game meat published in 2003 (VLA, 2003) stated that post mortem veterinary inspection in 

small wild game does not have any additional beneficial effect in identifying foodborne 

diseases and an effective Hazard Analysis and Critical Control Point (HACCP) system should 

be able to detect and discard unfit meat. Salmonella spp., C. jejuni and E. coli O157:H7 were 

considered the most important zoonotic hazards from small wild game species and they can 

pass undetected at veterinary inspection in AGHEs because they may not produce visible 

lesions in the carcass (VLA, 2003). The risk associated with these pathogens in small wild 

game meat inspected at AGHEs is summarized in Table 1.3 below (VLA, 2003 and Coburn et 

al., 2005). Campylobacter jejuni was the pathogen that was considered to be the greater risk 

to public health from game bird meat. 

 



30 

 

Hazard  Risk  Comments  

Campylobacter jejuni Moderate. High 

prevalence of 

Campylobacter spp. in 

wild game meat. 

Survives well at refrigeration. Very 

susceptible to cooking temperature 

of 70°C for a minimum of 2 minutes. 

Salmonella spp. Low. There is a low 

prevalence of Salmonella 

spp. in wild game meat. 

The absence of salmonella in small 

wild game meat is not unusual and 

reported by other authors (Paulsen 

et al., 2008). Susceptible to cooking 

temperature of 70°C for a minimum 

of 2 minutes. 

E. coli O157:H7 Low. Prevalence is 

considered low. 

Susceptible to cooking temperature 

of 70°C for a minimum of 2 minutes. 

Table 1.3:  Summary of hazards and risk associated with small wild game species. 

 

1.5 Aims of the study  

The reduction of foodborne disease caused by Campylobacter spp. is a key aim of the FSA 

Strategic plan 2010-2015. This is focused on the reduction of Campylobacter in chicken, as 

60-80% of cases of campylobacteriosis in humans can be attributed to poultry meat. However, 

C. jejuni and C. coli have also been reported in a range of livestock and wildlife species, 

including live pheasants. Pheasants reach the consumer’s table as a by-product of the shooting 

industry and wild game meat has recently increased in popularity among consumers on the 

grounds of sustainability, healthy eating, and support to local production. Approximately 3.5 

million game birds are shot in Scotland every year; however, only 700,000 are received at 

Scottish AGHEs for veterinary inspection. Despite this volume of wild game entering the food 

chain, there is a lack of information concerning the risk of campylobacteriosis in humans 

arising from consumption of wild game meat and the role wild game birds may have as a 

reservoir of infection. However, there is evidence that the greatest hazard from consumption 

of wild game meat relates to handling procedures after killing, where hygienic standards are 

difficult to sustain in the wild and Campylobacter can play an important role as a foodborne 

hazard from small wild game meat. 

As a contribution to the surveillance of Campylobacter infection in wild game birds in 

Scotland, this study proposes to explore the role that pheasants play in Campylobacter 
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infection in Scotland and to expand our knowledge base on wild game campylobacteriosis. 

This study’s aims were: 

1. To determine the prevalence of Campylobacter spp. in wild game pheasants processed 

in AGHEs in Scotland. 

2. To identify the main sequence types (ST) of Campylobacter spp. isolated from 

pheasants. 

3. To determine if the ST of Campylobacter spp. from pheasants are the same as in 

broilers and humans and evaluate the impact on public health. 
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Chapter 2 Materials and Methods (study site and sam ple 
collection) 

 

2.1 Introduction 

The research project ran over a two-year period, starting in September 2013 and finishing in 

August 2015. It was composed of two stages and the main steps followed are outlined below: 

Stage 1: 

• Stage 1a: During the hunting season, caecal and neck skin samples were collected 

from pheasant carcases in Approved Game Handling Establishments (AGHEs) in 

Scotland and sampled birds were traced to their originating shooting estates. 

• Stage 1b: Campylobacter spp. were isolated using traditional culture methods (based 

on ISO 10272) at the Roslin Institute; molecular species identification of the isolated 

Campylobacter spp. was performed using Polymerase Chain Reaction (PCR) at the 

Roslin Institute and High-Throughput Multilocus Sequence Typing (HiMLST) was 

carried out at the Regional Laboratory for Public Health Kennemerland, Haarlem, the 

Netherlands. 

Stage 2: 

• Stage 2a: The results obtained from stage 1 were analysed to estimate the prevalence 

and characterise sequence types (ST). 

• Stage 2b: Sequence types identified from pheasants were compared and combined 

with the molecular epidemiology of Campylobacter isolates from humans and other 

food producing animals archived in the PubMLST Database to perform host 

association and source attribution. 

 

2.2 Geographical stratification and sample size sel ection 

Caecal and skin samples were collected from pheasant carcases in selected AGHEs in Scotland 

during the hunting season 2013/2014. 
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The FSA records 11 AGHEs in Scotland (SRUC, 2012): 

• One in the Western Isles 

• Three in the Highlands and Moray (Region 1) 

• One in Aberdeenshire (Region 2) 

• Two in Perth, Kinross and Angus (including Argyle and Bute) (Region 3) 

• Two in Edinburgh and  the Scottish Borders (Region 4) 

• Two in Glasgow, Ayrshire, Dumfries and Galloway (Region 5) 

Based on this information and for the purpose of this study Scotland was divided into five 

geographical regions that excluded the Western Isles which were not easily accessible for 

sampling purposes. Five sampling sites were selected to collect birds from different estates 

across Scotland, one from each region. The selection was made based on the size of the 

business, the ability to receive pheasants consistently during the hunting season and the 

capacity to receive birds from several estates within the catchment area (Table 2.1). 

 

AGHEs Name  Region  Remarks  

Tarradale Game Ltd.  
1 

Not operating on a regular basis 
Ardgay Game Ltd. Chosen for sampling 
Simpson Game Ltd. Not operating on a regular basis 
     
Aberdeenshire Larder 2 Chosen for sampling 
     
Hubertus Game Ltd.  

3 
Chosen for sampling 

J C Mitchell Poultry and Game 
Dealers 

Not operating on a regular basis 

   
Kezie (UK) Ltd. 4  Randomly chosen for sampling  
Burnside Farm Foods   
     
Braehead Foods Ltd.  

5 
Biggest AGHEs for small wild game in 
Scotland – chosen for sampling. 

Craigadam Country Larder Small size AGHE 
Table 2.1: List of approved small wild game AGHEs in Scotland (excluding Western Isles) by 
region and reason for selection for sampling. 

 

Figure 2.1 below shows the boundaries of the five Scottish regions with the location of the 

sampling sites and estates sampled. 
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Figure 2.1: The five Scottish regions for sampling are delimitated by a red line, the location of 
the five sampling sites is identified by a red dot and estate sampled are highlighted in colours 
(IV=Inverness, AB=Aberdeenshire, FK=Falkirk, PH=Perth, DD=Dundee, TD=Galashiels, 
G=Glasgow and KA=Kilmarnock). 



35 

 

The AGHEs selected, estates of origin and number of samples collected from each site are 

shown in Table 2.2 below: 

 

Sampl
ing 
Site 

Name of 
AGHE 

sampled, 
date and total 

number of 
samples 
collected 

Estates 
sampled 

Total number of 
pheasants in each 

batch sampled 

Samples 
collected 

(% of birds 
sampled) 

Region  
estate 

contributes 
to 

1 Ardgay Game 
(Bonar Bridge) 

(38) 
¥08/11/2013 

†IV25 40 38 (95%) Region 1 

2 Aberdeenshire 
Larder 

(Aberdeen) 
(56) 

22/10/2013 

AB32 148 23 (15.5%) Region 2 
AB34 273 33 (12%) Region 2 

3 Hubertus 
Game 

(Pitlochry) 
(73) 

29/10/2013 

IV36 110 18 (16.3%) Region 1 
FK15 228 10 (4.3%) Region 3 
PH8 196 35 (17.8%) Region 3 
DD8 145 10 (6.8%) Region 3 

4 Kezie Ltd. 
(Duns) 

(42) 
18/11/2013 

TD11 102 12 (11.7%) Region 4 
TD13 31 30 (96.7%) Region 4 

5 Braehead 
Foods Ltd. 

(Kilmarnock) 
(78) 

29/01/2014 

TD5 230 18 (7.8%) Region 4 
KA19 83 22 (26.5%) Region 5 
KA29 32 16 (50%) Region 5 
G66 65 22 (33.8%) Region 5 

Total   1683 287 (17%)  
Table 2.2: Summary of samples collected (n) from each estate (†), date of collection (¥), their 
contribution to the number of samples collected per region and total number of pheasants 
present in each batch sampled. Estates are identified by the digits in the first half of the 
postcode as follows: IV=Inverness, AB=Aberdeenshire, FK=Falkirk, PH=Perth, DD=Dundee, 
TD=Galashiels, KA=Kilmarnock, G=Glasgow). 

 

A simple random sampling estimate was used to determine the sample size as proposed by 

Thrusfield (2005) for a large, theoretically infinite population since the pheasant population in 

Scotland is approximatively 2.5 million (PACEC, 2006). Assuming an expected prevalence of 

25% in wild pheasants, inferred from relevant literature (Atanassova and Ring, 1999; Stern et 

al., 2004; Nebola et al., 2007), and a desired confidence level of 95% with an absolute 

precision of 5%, it was necessary to sample approximately 58 birds per region. The total 

number of pheasants sampled for this project was 287. 
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The sampling date was agreed with the sampling site depending on the availability of birds. 

On the agreed date, a subset of all pheasants processed that day was sampled, the sampled 

birds generally originating from more than one estate. Estates were selected from different 

areas within the same region based on the digits in the first half of their postcode. For logistical 

reasons, however (e.g. not enough pheasants present in the chiller on the sampling date), it 

was not possible to collect all the required samples for regions 1 and 4 on the sampling date. 

To compensate for this, the rest of the samples required for region 1 were sampled from 

sampling site 3 and those remaining for region 4 were sampled from sampling site 5, as shown 

in Table 2.2. This was possible because AGHEs receive pheasants from estates located in 

different Scottish regions. In addition, some batches were already being partially processed by 

the Food Business Operator at the time of sampling. For logistic reasons, a uniformly 

standardised approach to sampling was not possible. The sampling approach is detailed in 

Table 2.2. 

Time of year and date of kill, where known, were recorded at the time of sampling and were 

taken into consideration when analysing the data. The sex of sampled birds was not recorded 

as this was not considered relevant in terms of Campylobacter infection in pheasants (Dipineto 

et al., 2008a). 

 

2.3 Sample collection 

Pheasants are received at AGHEs from several shooting estates. The same estate can deliver 

pheasant carcases from different shooting days all at the same time. Usually pheasant carcases 

from the same shooting day are considered to be a batch, identified by a unique serial batch 

number and kept separate from other batches in crates (Figure 2.2). 
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Figure 2.2:  Pheasants in crates: the red arrow shows the batch number on the label 
attached to the crates. 

 

Every batch is delivered with documentation (Figure 2.3) that will state: 

• Name and address of the shooting estate 

• Date of shooting 

• Unique batch number (related to the crate) 

• Type and number of wild game birds in the batch 

• Name of the Trained Hunter 

Optional information for small wild game is: 

• Trained Hunter Declaration  

• Temperature of carcases at collection 

• Uplift date 
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Figure 2.3:  Example of a document which gamekeepers complete for every batch of wild 
game birds collected at the shooting estate. 

 

After reception at the AGHE pheasant carcases await processing in “intake” chillers, as the 

legislation requires the temperature of pheasant carcases to fall below 4°C and to be kept under 

refrigerated conditions along the food chain. 

For this project, batches to be sampled were traced to the shooting estate through the relevant 

documentation. Pheasants were then selected and samples collected at intake prior to 

processing (Figure 2.4) to avoid the risk of cross-contamination during plucking and 

evisceration. 

Pheasants were individually sampled. A skin sample the size of a one pound coin 

(approximately 1 cm in diameter) was taken from the neck region. Pheasant carcases were 

opened (Figure 2.5) and caeca were detached from the rest of the intestine (Figure 2.6). Skin 

and caecal samples were individually placed in sampling pots, labelled with the bird number, 

in sequential numerical order and stored at refrigeration temperature in the chiller. Gloves and 

blades were changed between samples and the sampling surface cleaned and disinfected after 

discarding each carcase, to avoid cross-contamination. 
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Figure 2.4:  Pheasant carcases ready for sample collection. 

 

 

 
Figure 2.5:  Opening pheasant carcase to expose the gastrointestinal tract. 
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Figure 2.6:   The red arrow shows the caeca still attached to the rest of the gastrointestinal 
tract. 

Samples were kept at refrigeration temperature using ice packs in refrigerated boxes during 

transport, then were stored in a chilling room at the Royal (Dick) School of Veterinary Studies 

(R(D)SVS). Samples were transferred to the Roslin Institute laboratories the day after the 

collection day and processed as follows: 

• Day 0 – Sample collected at AGHE. 

• Day 1 – Sample plating: 1g of caecal content from each bird diluted 1:10 in phosphate 

buffered saline (PBS) and then four further 10-fold dilutions were prepared from each 

sample; each dilution was plated on modified charcoal cefoperazone deoxycolate agar 

(mCCDA) and incubated for 48 hours at 37°C, under microaerophilic conditions 

(5%CO2, 5%O2, 90%N2) (PHE, 2014). 

• Day 3 – Plate reading: mCCDA plates were examined and colonies counted. From 

each sample, 1 to 8 colonies were isolated and plated individually on mCCDA plates 

to obtain single pure colonies and incubated for 48 hours at 37°C, under 

microaerophilic conditions (PHE, 2014). 

• Day 6 – Pure colonies from mCCDA plates were transferred into 16.67% glycerol in 

Bolton broth and frozen to -80°C. This process ensured long-term survival of 

recovered colonies (PHE, 2014). 

Details of the laboratory technique used are given in Chapter 3. 
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Chapter 3 Campylobacter isolates, prevalence and bacterial 

loads  

 

3.1 Introduction 

As detailed in the main introduction (section 1.3.2), there are few prevalence studies relating 

to Campylobacter infection in pheasants in the literature. Studies conducted in Germany, 

Russia, Italy and the Czech Republic (Atanassova and Ring, 1999; Stern et al., 2004; Dipineto 

et al., 2008a; Dipineto et al., 2009; Nebola et al., 2007) vary in terms of the sampled 

population, the sampling method and the resulting prevalence. Based on cloacal swabs 

collected from farmed pheasants, the Italian researchers detected a prevalence that ranged from 

43.3% to 86.7% (Dipineto et al., 2008a; Dipineto et al., 2009).  In Germany and Russia, caecal 

content was collected from hunted wild pheasants and the prevalence was lower, at 26% and 

25%, respectively (Atanassova and Ring, 1999; Stern et al., 2004). The study from the Czech 

Republic sampled intestinal contents and reported a prevalence of 70.2% in farmed birds and 

27.5% in birds shot in the wild (Nebola et al., 2007).  The prevalence of infection in farmed 

pheasants was consistently higher across these studies compared to wild pheasants. This has 

been attributed to the difference in the kill-to-process time that is generally shorter (usually 

within 2 hours of death) for farmed birds compared to wild (Nebola et al., 2007).  A specific 

kill–to-process time was not defined in the aforementioned studies for the wild birds sampled. 

A prolonged kill-to-process time has been thought to be detrimental for Campylobacter 

survival due to the organism’s restricted growth requirements, however, other studies report 

that the method of pheasant carcase storage and the location of the shooting wound can greatly 

influence bacterial growth and survival in wild game birds (Paulsen et al., 2008). Survival of 

C. jejuni and C. coli on skin also seems challenging  as there are no reported cases of either of 

these species being recovered from pheasant skin samples; however, they have been recovered 

at a low prevalence (5.3%: n=57) from pigeon skin  (Soncini et al., 2006). There are no data 

available in the literature on Campylobacter spp. intestinal carriage in pheasants. 

 

3.2 Materials and methods 

Isolation of Campylobacter from caecal samples was carried out at the Roslin Institute 

bacteriology laboratory while skin samples were processed at the R(D)SVS microbiology 
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laboratory. Laboratory techniques to recover Campylobacter are standardised and refer to 

internationally recognised methods for the detection and enumeration of Campylobacter 

species (PHE, 2014). Modified Cefperazone Charcoal Deoxycholate Agar (mCCDA) is the 

preferred isolation medium for Campylobacter spp. and on this medium Campylobacter 

colonies form grey-tinged, flat and moist colonies, often with a metallic sheen and a tendency 

to spread (Figure 3.1). Other chromogenic agars may be used instead of mCCDA; options 

include Campy Food Agar (CFA), Brilliance Campy Count Agar (BCCA) and Campylobacter 

Selective agar (CASA).   

 

 

Figure 3.1:  Typical appearance of Campylobacter colonies on mCCDA 

 

The method used to isolate Campylobacter spp. from caecal content and skin was based on 

the BS EN ISO 10272-1:20063 (detection) and BS EN ISO/TS 10272-2:20064 (enumeration) 

standards (PHE, 2014). Detection of Campylobacter in the bacteriology laboratory is only able 

to identify typical Campylobacter colony formation; species identification and sequence 

typing of Campylobacter spp. is carried out by PCR and MLST techniques described later in 

Chapter 4 of this dissertation. 

The detection of Campylobacter spp. from organic samples usually involves initial enrichment 

in a selective liquid medium at 37oC for 5 hours (h) followed by incubation in a 

microaerophilic atmosphere (5%CO2, 5%O2, 90%N2) at 37oC for 48h to allow recovery and 

growth. This is sub-cultured onto selective solid medium followed by examination for colonies 

considered to be typical of Campylobacter. Confirmation of the colonies as Campylobacter is 
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performed using morphological (Gram staining), biochemical (oxidase and catalyse tests) and 

growth property tests. 

The enumeration of Campylobacter species by this method requires the inoculation of the 

surface of mCCDA plates with a defined volume of an appropriate decimal dilution of the test 

sample. Calculation of the number of colony forming units (CFU) per gram (g) of sample for 

Campylobacter spp. is determined from the number of typical colonies obtained on the 

selective medium. The number of CFU of Campylobacter spp. per 1g of caecal content is 

calculated as follows: 

CFU/g = 1 x colony count x dilution factor 

Counts greater than 100 are reported with one figure before and one after the decimal point 

multiplied by the appropriate power of 10. Decimal counts are rounded up if the last figure 

was 5 or more, or down if the last figure was 4 or less. When no colonies are detected then this 

is reported as Campylobacter spp. <10 CFU/g based on 1:10 dilution. Due to the large range 

of Campylobacter loads recovered from positive samples for the purpose of statistical analysis 

and graphical representation, CFU/g values were transformed and expressed in a logarithmic 

scale (log10). 

Statistical analysis 

Statistical analysis of results was performed using Minitab 17 statistical software (© 2013 

Minitab Inc). Presence of infection across regions, estates and sampling sites was compared 

using a Binary Logistic Regression calculation. Results were considered to be statistically 

significant if the overall P value was <0.05 and the 95% Confidence Interval (CI) Odds Ratio 

between groups did not cross 1. Odds Ratios that are greater than 1 indicated that the condition 

was more likely in the first group, conversely Odd Ratios that were less than 1 indicated that 

the condition was less likely in the first group. Comparison of the level of Campylobacter load, 

expressed as Log10CFU/g, across regions, estates and sampling sites was calculated with One-

Way ANOVA using the Tukey method and 95% CI to allow pairwise comparison “post-hoc”. 

Results were considered to be statistically significant if the overall P value of the test result 

was <0.05 and the 95% CI of the different groups did not cross each other. WinPepi software 

Version 11.35 (© J.H. Abramson, 2013) was used to calculate prevalence and CIs for clusters 

of different sizes because of the variation in the number of samples collected from each estate. 

Microsoft Excel 2013 was used for raw data handling. 
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3.2.1 Campylobacter isolation – Pilot studies 

Two pilot studies were carried out in February and September 2013 to test the reliability of 

the culture methods in the microbiology labs. The trial run in February was carried out on 

caecal content obtained from six birds all belonging to the same estate and on 14 neck skin 

samples from birds collected from four different estates.  The September study was carried out 

by sampling five pheasants for skin and caecal content belonging to the same estate. The 

laboratory technique used in February was the same as outlined in paragraph 3.2.2 and 3.2.3 

for Campylobacter isolation in skin and caecal samples, respectively, the only difference being 

that the microaerophilic conditions for Campylobacter growth were achieved by using 

CampyGen (Oxoid) paper sachets in jars and not microaerophilic cabinets. As a consequence 

of further literature review, the isolation technique was refined in the September pilot by using 

microaerophilic cabinets instead of paper sachets in jars (PHE, 2014). 

3.2.2 Skin Samples 

Skin samples were prepared for swabbing by removing excessive fat, if present. Sterile swabs 

moistened in Bolton broth were used to swab the skin samples then bathed in 500ml of 

enrichment Bolton Broth (Oxoid) for 1h, with occasional agitation. The swabs were then 

incubated for 48h at 37oC in a microaerophilic atmosphere. For direct plating, a decimal 

dilution was prepared for each sample in phosphate buffered saline (PBS) solution, followed 

by four further 10-fold dilutions; 0.1ml of each dilution was plated on mCCDA (Oxoid) and 

CFA (Biomerieux) and incubated for 48h at 37oC under microaerophilic conditions. Positive 

control samples were also prepared by contaminating the skin samples with known 

Campylobacter colonies taken from the microbiology laboratory stock isolates. These were 

confirmed as Campylobacter spp. by morphological, biochemical and growth property tests. 

Positive control samples were processed the same way as the other samples. 

The presence or absence of Campylobacter colonies was determined by examination of 

mCCDA and CFA plates for their typical appearance, according to the plate manufacturers’ 

instructions. On CFA plates Campylobacter bacteria form burgundy-red to orange-red 

colonies on the light beige agar (Figure 3.2). Suspect isolates were subjected to morphological 

examination. Campylobacter colonies were counted visually on the plate in decimal solution 

series up to 250 colonies and were standardised as CFU/g. 
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Figure 3.2:  Typical appearance of Campylobacter colonies on CFA 

 

3.2.3 Caecal samples 

Two hundred and eighty seven caecal samples were collected for Campylobacter isolation; 1g 

of caecal content (0.5g from each caecum) from each sample was diluted 1:10 in PBS and then 

four further 10-fold dilutions were prepared from each sample; 0.1ml of each dilution was 

plated on mCCDA and incubated for 48h at 37oC, under microaerophilic conditions. Campy 

Food Agar plates were not inoculated with caecal samples because from the skin samples 

cultures there was no difference in efficiency compared to the mCCDA plates. 

The presence or absence of Campylobacter colonies was determined by examination of 

mCCDA plates for their typical appearance according to the manufacturer’s instructions and 

Campylobacter colonies were counted visually on the plate in decimal solution series up to 

250 colonies and were standardised as CFU/g. 

Eight pure colonies from mCCDA isolates were transferred into Bolton broth, diluted 1:3 with 

16.67% glycerol and frozen to -80oC. This process ensured the long-term survival of recovered 

colonies. 

 

3.3 Results and Data Analysis 

3.3.1 Campylobacter isolation – Pilot studies 

In the February pilot study, the 14 neck skin samples no Campylobacter colonies were detected 

(Campylobacter spp. <10 CFU/g based on 1:10 dilution). Only one pheasant caecal sample 
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out of the six tested was positive for Campylobacter spp., no count was performed on positive 

sample. 

 In the September pilot study, using the modified laboratory technique, three of the five 

pheasants tested were positive for Campylobacter spp. but no Campylobacter count was 

performed.  Pure colonies were isolated and frozen at -80°C for future reference. The skin 

samples showed all Campylobacter spp. <10 CFU/g based on 1:10 dilution, so were 

considered negative. A summary of the results of the two pilot studies is shown in Table 3.1. 

 

 Caecal content  Skin  

Feb ‘13  1/6 0/14 

Sept ‘13  3/5 0/5 

Table 3.1:  Proportion of samples positive for Campylobacter in two pilot studies undertaken 
in February and September 2013. 

 

3.3.2 Main survey, skin samples 

Forty neck skin samples were collected in this study and plated to isolate Campylobacter 

colonies but there was no growth, expressed as Campylobacter spp. < 10 CFU/g based on 1:10 

dilution (Upper 95% C.I. <7.2%). There was no difference in colonies growth results by using 

mCCDA and CFA plates. 

3.2.3 Main survey, caecal samples 

Prevalence of infection 

The 287 samples indicated an overall prevalence of infection of 37.6% (CI 13.9% - 61.2%), 

with the lowest prevalence of 6.6% (CI 0% - 22.5%) recorded in region 5. The prevalence of 

infection by region and estate is shown in Table 3.2. The prevalence of infection by sampling 

site is shown in Table 3.3 and was determined because, as detailed in section 2.2, for logistical 

reasons it was not possible to collect all the required samples for regions 1 and 4 on the 

sampling date. The rest of the samples required for region 1 were sampled from sampling site 

3 and those remaining for region 4 were sampled from sampling site 5.   
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 Region  1 Region 2 Region 3 Region 4 Region 5 Tota ls 

Samples 
collected 

56 56 55 60 60 287 

Samples 
collected by 
estate 

IV25 ‡(38) AB32 (23) PH8 (35) TD11(12) KA19 (22)  

IV36 (18) AB34 (33) DD8 (10) TD13 (30) KA29 (16) 

 FK15 (10) TD5 (18) G66 (22) 

Positive 
samples 

29 25 20 30 4 108 

 

 

 

Prevalence 
by estate 

IV25Ω (26)  

*(68.4%)             
†CI 51.3% - 82.4% 

AB32 (9)  

(39.1%)                
CI 19.7% - 61.4% 

PH8 (10)  

(28.6%)                
CI 14.6% - 46.3% 

TD11 (6)  

(50%)                   
CI 21% - 78.9% 

KA19 (2)  

(9%)                     
CI 1.1% - 29.1% 

 

IV36 (3)  

(16.6%)                
CI 3.5% - 41.4% 

AB34 (16)  

(48.4%)                
CI 30.7% - 66.4% 

DD8 (4)  

(40%)                   
CI 12.1% - 73.7% 

TD13 (22)  

(73.3%)                
CI 54.1% - 87.7% 

KA29 (2)  

(12.5%)                
CI 1.6% - 38.3% 

 FK15 (6) 

(60%)                    
CI 26.2% - 87.8% 

TD5 (2)  

(11.1%)                
CI 1.3% - 34.7% 

G66 (0)  

(0%)                     
CI <12.7% 

Overall 
Prevalence  

51.7% 

CI 0% - 100% 

44.6% 

CI 0% - 95.8% 

36.3% 

CI 1.8% - 70.8% 

50% 

CI 0% - 100% 

6.6% 

CI 0% to 22.5% 

37.6% 

CI 13.9% - 61.2% 

Table 3.2:  Summary of samples collected‡ (n) and positive results Ω (n) from each region and estate.  Overall prevalence* (%) and 95% Confidence 
Intervals† (CI) were estimated using different-size clusters calculation. Prevalence and CI for single estates was estimated using standard CI calculation.
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Sampling 
Site 

1  2 3  4 5 Totals  

Samples 
collected 

38 
 

56 
 

73 
 

42 
 

78 
 

287 
 

Samples 
collected by 
estate 

IV25 ‡(38) AB32 (23) PH8 (35) TD11(12) KA19 (22)  
 AB34 (33) DD8 (10) TD13 (30) KA29 (16) 

 FK15 (10)  G66 (22) 
IV36 (18) TD5 (18) 

Positive 
samples 

 
26 Ω 

 
25 

 
23 

 
28 

 
6 

 
108 

 
Overall 
Prevalence  

 
*68.4% 

 
†CI 51.3% 
- 82.4% 

 
44.6% 

 
CI 0% - 
95.8% 

 
31.5% 

 
CI 10.8% 
- 52.83% 

 
66.7% 

 
CI 0% - 
100% 

 
7% 

 
CI 0% - 

17% 

 
37.6% 

 
CI 5.8% - 

69.5% 
Table 3.3:  Summary of caecal samples collected‡ (n) and positive results Ω (n) by sampling 
site. Overall prevalence* (%) and 95% Confidence Intervals† (CI) were estimated using 
different-size clusters calculation. Prevalence and CI for sampling site 1 was estimated using 
standard CI calculation.  

 

Using a binary logistic regression calculation it was possible to estimate if there was any 

statistically significant difference in terms of prevalence of infection between regions and 

sampling sites (Table 3.4 and 3.5, respectively). 

 

 

Regions (Chi -Square 40.90; P<0.001) Odds Ratio  95% CI 

2 1 0.750 (0.357, 1.578) 

3 1 0.532 (0.249, 1.136) 

4 1 0.931 (0.449, 1.929) 

5 1 0.066 (0.021, 0.208) 

3 2 0.708 (0.331, 1.516) 

4 2 1.240 (0.597, 2.574) 

5 2 0.088 (0.028, 0.277) 

4 3 1.750 (0.829, 3.693) 

5 3 0.125 (0.039, 0.396) 

5 4 0.071 (0.023, 0.221) 

Table 3.4: Binary logistic regression analysis to estimate any statistical differences in the 
level of infection between regions. Statistically significant differences are highlighted in bold. 
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Sampling  Sites (Chi -Square 68.99; P<0.001) Odds Ratio  95% CI 

1 2 2.686 (1.133, 6.370) 

3 1 0.212 (0.091, 0.493) 

4 1 0.923 (0.361, 2.357) 

5 1 0.038 (0.013, 0.113) 

3 2 0.570 (0.277, 1.174) 

4 2 2.480 (1.081, 5.688) 

5 2 0.103 (0.038, 0.276) 

4 3 4.347 (1.935, 9.769) 

3 5 5.520 (2.096, 14.535) 

4 5 24.000 (8.387, 68.671) 

Table 3.5: Binary logistic regression analysis to estimate any statistical differences in the 
level of infection between sampling sites. Statistically significant differences are highlighted 
in bold. 
 

The statistical analysis indicated that there was a significant difference in terms of prevalence 

of infection (P<0.001) between regions. This was particularly prominent in region 5 when 

compared to the other regions. When the same statistical test was applied excluding region 5, 

there was no significant difference (P=0.352) in prevalence of infection across the remaining 

regions. Region 5, due to its very low prevalence, could thus be considered a potential 

confounder in terms of statistical analysis of the results. Not including region 5, the overall 

prevalence of infection increased to 45.8% (CI 34.9% - 56.6%). The same pattern was 

observed when prevalence of infection was compared across sampling sites, where sampling 

site 5 was significantly different compared to all the other sampling sites.  

Campylobacter bacterial load 

The average Campylobacter bacterial load of positive samples (n=108) was 5.8 x 106 CFU/g 

(median 3 x 104 CFU/g and range of <10 CFU/g to 4 x 108 CFU/g). A breakdown of the 

Campylobacter bacterial counts in the positive samples by region is depicted in Figure 3.3. 

Statistical analysis by One-way ANOVA showed no significant difference in the means of 

Campylobacter carriage across and between regions (P=0.441) (Figure 3.4). 
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Figure 3.3:  Median and range of Campylobacter load in positive caecal samples by region 
expressed as log CFU/g. 

 

 
Figure 3.4:  Means of Campylobacter load in positive caecal samples by region expressed as 
log CFU/g. 

 

The distribution of the concentrations of Campylobacter bacterial load count in caecal content 

of pheasants (n=287) by region was >103 CFU/g in 33.4% (CI 28% - 39.2%) of samples and 
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5.6% (CI 3.2% - 8.9%) were >106 CFU/g. Negative samples with Campylobacter spp. <10 

CFU/g based on 1:10 dilution counted for 61.3% (CI 55.4% - 67%) (Figure 3.5). 

 

 
Figure 3.5:  Frequency distribution (%) of the Campylobacter load counts in pheasants by 
region (R) (0=negative samples). 

 

An overall summary of Campylobacter load by estate is shown in Figure 3.6.  

 
Figure 3.6:  Median and range of Campylobacter load in positive sample by estate 
expressed as log CFU/g. 
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The same statistical analysis also showed no significant difference in the mean of 

Campylobacter carriage across and between estates (P=0.342) (Figure 3.7) and sampling sites 

(P=0.461). 

 

Figure 3.7:  Means of Campylobacter load and 95% Confidence Interval (CI) of positive 
samples by estate expressed as log CFU/g. 

 

Regional analysis 

Region 1: Two estates were sampled from region 1, estates IV25 and IV36.  Estate IV25 had 

a prevalence of infection of 68.4% (CI 51.3% - 82.4%) with an average Campylobacter load 

of 4.7 x 106 CFU/g. A prevalence of 16.6% (CI 3.5% - 41.4%) was observed in estate IV36 

with an average Campylobacter load of 3.9 x 103 CFU/g. Combined, these results indicate that 

the overall prevalence for region 1 is 51.8% (C.I. 0% - 100%) but this is driven by the vast 

majority of positive samples recovered from estate IV25 so it may not be an entirely true 

representation of the level of infection across the region (P<0.001).  In terms of Campylobacter 

carriage, even though samples from estate IV25 had a wider range of Campylobacter load 

compered to estate IV36 (Figure 3.6), overall there was no statistical difference (P=0.930) in 

the means of bacterial carriage between the two estates (Figure 3.7). 

Region 2: Two estates were sampled from region 2, estates AB32 and AB34. The prevalence 

of positive samples from estate AB32 was 39.1% (CI 19.7% - 61.4%) with an average 

Campylobacter load of 1.7 x 104 CFU/g.  The prevalence in estate AB34 was 48.4% (CI 30.7% 
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- 66.4%) with an average Campylobacter load of 4.9 x 106 CFU/g.   The results for region 2 

showed a consistent spread of Campylobacter infection in positive samples across the two 

estates (P=0.488) with an overall prevalence of 44.6% (CI 0% - 95.8%). However, there was 

a significant difference in the level of Campylobacter load between the two estates (P=0.004), 

with a lower mean Campylobacter count and load range in AB32 compared to AB34 (Figure 

3.6). 

Region 3: Region 3 comprised three estates, PH8, DD8 and FK15.  Based on these three 

estates, the overall prevalence of infection was 36.3% (CI 1.8% - 70.8%). The average 

Campylobacter load of positive samples from estate DD8 was 5.7 x 105 CFU/g. In estate FK15 

there was an average Campylobacter load of 2.2 x 106 CFU/g and in estate PH8 the average 

Campylobacter load was 4 x 107 CFU/g.  The results for Region 3 showed a difference in 

prevalence across the three estates that varied from 28.6% (CI 14.6% - 46.3%) in estate PH8 

to 40% (CI 12.1% - 73.7%) in estate DD8 and 60% (CI 26.2% - 87.8%) in estate FK15 

although this difference was not statistically significant (P=0.192). There was a wide range in 

Campylobacter loads in positive samples from all three estates but there was no statistically 

significant difference (P=0.677) in the Campylobacter load means (Figure 3.7). 

Region 4: Three estates were sampled from this region, TD11, TD13 and TD5.  The overall 

prevalence of infection was 50% (CI 0% - 100%) with an average Campylobacter load of 3.5 

x 105 CFU/g.  The prevalence in estate TD11 was 50% (CI 21% - 78.9%), 73.3% in estate 

TD13 (CI 54.1% - 87.7%) and 11.1% (CI 1.3% - 34.7%) in estate TD5. The average 

Campylobacter load in the positive samples from estate TD11 was 7.6 x 104 CFU/g; in TD13 

it was 4.5 x 105 CFU/g; and in estate TD5 it was 7.4 x 104 CFU/g.  There was a statistically 

significant difference in the Campylobacter load (P<0.001) but only for TD11 and TD13 when 

compared to TD5. The difference in Campylobacter infection between TD13 and TD11 was 

not significant (Table 3.6).  

 

Estates  Odds Ra tio  95% CI 

TD13 TD11 2.750 (0.684, 11.053) 

TD5 TD11 0.125 (0.019,  0.799) 

TD5 TD13 0.045 (0.008,  0.243) 

Table 3.6:  Binary logistic regression analysis to estimate any statistically significant 
differences in the Campylobacter load between estates in region 4. Statistically significant 
differences are highlighted in bold. 
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There was no statistically significant difference (P=0.727) observed in the means of 

Campylobacter load between estates in region 4 (Figure 3.7).  

Region 5: This region comprised three estates, KA19, KA29 and G66.  The overall prevalence 

of infection in region 5 was 6.6% (CI 0% to 22.5%).  All samples from estate G66 contained 

< 10 Campylobacter CFU/g based on 1:10 dilution (Upper 95% CI <12.7%) so were 

considered negative; estate KA19 had a prevalence of 9% (CI 1.1% - 29/1%) and estate KA29 

had a prevalence of 12.5% (CI 1.6% - 38.3%). The average Campylobacter load in the positive 

samples from estate KA19 was 5 x 105 CFU/g while in KA29 it was 1.6 x 105 CFU/g. As 

mentioned above, region 5 had a consistently low prevalence of infection, at least based on the 

three estates surveyed, and this was statistically different to the other regions. A binary logistic 

regression to compare the prevalence of infection among estates could not be undertaken 

because of the lack of infection in estate G66. The bacterial load means were not statistically 

significant (P=0.376) between the two estates (Figure 3.7). However, the small number of 

positive samples (n=4) from this region limits statistical analysis.  

Relationship between bacterial carriage and kill–to-process time 

The period of time between shooting batches of pheasants on the estates and laboratory 

processing of caecal samples varied between 2 and 7 days. Statistical analysis of kill-to-

process time did not indicate any significant difference in terms of Campylobacter carriage 

(P=0.338) (Figure 3.8 and 3.9) even when sampling site 5 was excluded from the analysis 

(P=0.322). 

 
Figure 3.8:  Campylobacter load means (Log10 CFU/g) and 95% Confidence Interval (CI) of 
positive caecal samples in relation to the kill-to-process time. 
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Figure 3.9:  Variation in Campylobacter load count (Log10 CFU/g) in positive caecal samples 
in relation to the sampling site and the kill-to-process time. 

 

3.4 Discussion 

This is the first UK based study estimating not only the prevalence of Campylobacter infection 

but also the bacterial carriage in caecal content from pheasants based on a confidence level of 

95% with a desired absolute precision of 5%. It contributes to the epidemiological knowledge 

base and surveillance data relating to Campylobacter infection in wild game birds in Scotland. 

The survey indicated an overall prevalence of infection in pheasants of 37.6% (based on 287 

birds) (CI 13.9% - 61.2%). This is in line with previously reported prevalence levels which 

were based on analyses of caecal content in hunted wild pheasants elsewhere in Europe, levels 

which ranged from 25 to 27% (Nebola et al., 2007; Atanassova and Ring, 1999; Stern et al., 

2004).  The main study was preceded and informed by two small scale pilot studies that 

allowed some refinement of established Campylobacter culture methods. 

Prevalence was not uniform across all the regions but this was likely influenced by two factors, 

one relating to time of sampling, the other to the fact that prevalence was particularly low in 

region 5.  Excluding the results from region 5, the overall prevalence of infection of 45.8% 

(CI 34.9% - 56.6%) was higher than that reported by previous studies. It was still lower 

compared to farmed pheasants slaughtered on farm, a pattern previously reported by Nebola 
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(2007), where the prevalence was as high as 70% (Nebola et al., 2007). It is also lower than 

previous studies based on cloacal swabs from live birds where the prevalence reached almost 

90% (Dipineto et al., 2008b). The discrepancy in bacterial carriage between farmed and hunted 

pheasants has been attributed to the fact that samples from farmed pheasants are generally 

processed more quickly (Nebola et al., 2007).  In previous studies, while a kill-to-process time 

was not always specified, wild pheasant samples were not taken immediately after shooting, 

potentially compromising Campylobacter survival in the caeca (Nebola et al., 2007). In the 

study reported herein, the time from shooting in the field to processing in the laboratory varied 

from two to seven days but there was no statistically significant relationship between the 

bacterial load in positive caecal samples and the kill-to-process time (P=0.338). The main 

factors that influence microbiological growth in uneviscerated pheasants are storage 

temperature, days stored and location of shot wounds, especially if perforation of the intestine 

is present and these can possibly explain the difference in results found in this study from the 

literature (Paulsen et al., 2008). More specific studies need to be carried out to study the 

survival of Campylobacter spp. in caecal samples in relation to the time of kill-to-process. 

The low prevalence in samples collected from sampling site 5 could be at least partially 

explained by a genuinely low prevalence of infection in the estates sampled but it is also 

possible that the time of the year had an influence on Campylobacter carriage.  Seasonal 

fluctuation of Campylobacter carriage in food producing animals has been observed in 

multiple previous studies (Wallace et al., 1997; Stanley et al., 1998a; Stanley et al., 1998b). 

In this study there was a statistical difference (P<0.001) in terms of Campylobacter infection 

across sampling sites whereby samples collected at the end of January 2014 from sampling 

site 5 had a significantly lower prevalence compared to samples collected from the beginning 

of October to the end of November 2013 (sampling sites 1, 2, 3 and 4). This apparent seasonal 

influence was mirrored by the pilot study where the samples collected in February 2013 (n=6) 

had a prevalence of 16.6% (CI 0.4% - 64.1%) while those collected in September (n=5) had a 

prevalence of 60% (CI 14.7% - 94.7%). More studies would be required to verify if a seasonal 

pattern of Campylobacter carriage is actually present in pheasants, as reported in other farm 

animal species. 

The statistically significant difference in prevalence of infection between sampling sites 1 and 

3 may be due to the fact that samples from estate IV36 were collected from site 3 (region 3) 

and not site 1 (region 1). The same could be postulated for the significant differences between 

sampling sites 1 and 2 and between sampling sites 3 and 4. Therefore, these latter results may 

not be a true reflection of the prevalence differences at the regional level. There was also a 
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statistically significant difference in the Campylobacter load (P<0.001) of estates TD11 and 

TD13 compared to TD5. This may be explained by the fact that samples from estates TD11 

and TD13 were collected in November 2013 while samples from estate TD5 were collected in 

January 2014 when the overall prevalence in these samples was significantly lower than the 

others.  

The average bacterial load of positive samples (n=108) was 5.8 x 106 CFU/g (6.7 Log10/g) and 

this was broadly in line with the bacterial load of extensively reared British-based poultry 

flocks surveyed in 2011 (Allen et al., 2011). This study herein also found no significant 

difference in bacterial carriage means across and between Scottish regions and estates 

(P=0.441), even in region 5 where the prevalence of infection was very low. Based on the 

enumeration of Campylobacter spp. in positive samples, most pheasants had high 

Campylobacter counts across all five regions, so that only 5.2% of birds harboured <103 

CFU/g (Figure 3.5). 

Super-shedders can be defined as those animals that for a period of time shed high counts of 

infective organisms of a particular type than most other individuals of the same host species 

(Chase-Topping et al., 2008). It also involves persistent colonisation of a specific section of 

the gastrointestinal tract where proliferation of that particular organism is enhanced. It has 

been calculated that the cut-offs for super-shedding are bacterial counts of >104 CFU/g in 

faeces (Chase-Topping et al., 2008). When these counts are present above the specified cut-

offs, even in a small number of animals in the population they will increase the risk of disease 

spread to other in-contact animals (Chase-Topping et al., 2008). A typical example of bacteria 

that have been identified with super-shedders features is E. coli O157:H7 in cattle, but super-

shedding has been reported in other bacterial infections like Mycobacterium avium subsp. 

Paratuberculosis (Mitchell et al., 2008) and Salmonella enterica subsp. enterica serovar 

Typhimurium (Lawley et al., 2008). 

In this study, 23% of pheasants had a Campylobacter count >104 CFU/g (CI 18.3% - 28.3%) 

and 5.6% (CI 3.2% - 8.9%) were >106 CFU/g. Although these results relate to caecal and not 

faecal content they may still support super-shedding of Campylobacter in the environment 

which would potentially increase the risk of infection to other pheasants and to humans. The 

consumer may be exposed through an increased risk of meat contamination during evisceration 

at AGHEs while employees of pheasant farms may also be at increased risk through exposure 

to pheasant faeces. In a study from the USA, an outbreak of campylobacteriosis in workers on 

a pheasant farm was associated with occupational exposure to pheasants (Heryford and Seys, 

2004). Although Campylobacter counts from faecal swabs from live pheasants have not been 
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reported in the literature, as mentioned above, the prevalence of Campylobacter spp. in live 

farmed pheasants can be as high as 86.7% (Dipineto et al., 2008b). More studies need to be 

carried out to determine if Campylobacter spp. may have super-shedding features as 

previously reported in E. coli and Salmonella spp. 

In both pilot studies none of the 19 skin samples tested were positive for Campylobacter spp. 

In the first pilot only one out of six caecal samples were positive, so the negative results were 

mainly attributed to the laboratory technique used because from the literature review it was 

expected to have a higher prevalence of infection in pheasants. Some refinements of the 

laboratory technique led to more rewarding results, so these were applied for the isolation of 

Campylobacter spp. in the main study. Despite this, all five skin samples in pilot two and all 

forty from the main study were negative. In combination, the pilot study and main survey 

analysed 59 neck skin samples from which no Campylobacter spp. were isolated.   There is a 

number of potential reasons for these negative findings. In particular, they could be due to the 

storage of carcasses in cold, dry environment (e.g. chillers in larders and AGHEs) and under 

normal atmospheric conditions, both of which are detrimental to Campylobacter survival 

(Humphrey et al., 1995). It was considered unlikely that all 59 samples were truly negative, 

although this is a theoretical explanation.  A third possibility is that the culture method was 

unreliable. The recovery of only a single isolate from the six caecal samples analysed in the 

February 2013 pilot study may also support this as an explanation, at least for the skin samples 

analysed in the first pilot study. However, since the refinements in culture technique outlined 

in the materials and methods ultimately led to more rewarding yields in the September trial, 

the culture method was considered to be sufficiently dependable. Ultimately, the negative 

findings from the neck skin samples were not considered unusual as this is consistent with the 

literature where negative results were confirmed by more sensitive molecular tests (Soncini et 

al., 2006).  Therefore, the decision was made to focus solely on detection, isolation and 

sequencing from caecal samples. 

The molecular diversity of Campylobacter strains recovered from positive caecal samples was 

investigated in Chapter 4. 
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Chapter 4 Molecular diversity of Campylobacter strains 

 

4.1 Molecular epidemiology of Campylobacter  

Two genotyping methods, Polymerase Chain Reaction (PCR) and High Throughput Multi 

Locus Sequence Typing (HiMLST), were used in this project to define the molecular diversity 

of Campylobacter isolates obtained from caecal samples of wild pheasants. In particular, PCR 

was used to determine the Campylobacter genus and species (C. jejuni or C. coli) while 

HiMLST was used to identify the strain of the isolates. Campylobacter lari has also been 

identified in wild game birds and has known zoonotic potential (Waldenstrom et al., 2006) 

but, because of its much lesser importance in terms of human infection compared to C. jejuni 

and C. coli, it was not included in this study (DEFRA, 2013). 

Polymerase Chain Reaction is commonly used for genus and species determination because 

this method is able to detect specific fragments of DNA that originate from highly conserved 

regions of the genome, such as that encoding 16S rRNA, that are characteristic of the genus 

Campylobacter (Bang et al., 2002). Following the same principle, more specific loci are used 

for the detection of different species. A general outline of the PCR process is as follows. After 

DNA denaturation of the test genomic material, specific primers are added to the reaction that 

will attach to the single stranded fragment of DNA to replicate (annealing). DNA polymerase 

enzymes will then attach nucleotides to the primers following the DNA template to create a 

copy of the original DNA (extension). By repeating this cycle several times it is possible to 

amplify the genetic material so that it can be visualised by electrophoresis in an agar gel 

(Stoflet et al., 1988). Genus and species determination is achieved by comparing the size of 

the PCR products with a DNA ladder (a molecular weight marker), which contains DNA 

fragments of a known positive control that are run on the gel alongside the test sample. 

Multi Locus Sequence Typing (MLST) is the most common molecular method for subtyping 

Campylobacter spp. and is applicable to all strains of C. jejuni and C. coli (EFSA, 2013). 

Campylobacter spp. are characterised by a high evolutionary diversity with a non-clonal 

population structure that allows extensive horizontal genetic exchange. However, this 

technique, following PCR amplification, is able to compare DNA sequence differences in 

seven Campylobacter house-keeping genes that are an essential and well conserved part of the 

genome: aspA (aspartase A), glnA (glutamine synthase), gltA (citrate synthase), glyA (serine 

hydroxymethyltransferase), pgm (phosphoglucomutase), tkt (transketolase) and uncA (ATP 

synthase alpha subunit) (Dingle et al., 2001, 2005). Multi Locus Sequence Typing detects the 
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allele profile of each isolate across the set of genes and identifies it as a sequence type (ST). 

As explained by Forbes (2009): “Isolates matching across the whole set of genes are 

categorised as being the same ST; isolates mismatching for one gene within the set are defined 

as single-locus variants and are categorised as being in the same clonal complex (CC). Isolates 

in the same ST or CC are assumed to have a common ancestor, which is expected to be more 

recent for isolates in the same ST than for isolates in the same CC”. Clonal complexes are the 

units of analysis used to determine characteristics of interest such as host association, survival 

in the environment and in the food chain (EFSA, 2013). 

 

4.2 Materials and methods 

One Campylobacter pure colony per positive caecal sample was selected for plating on 

mCCDA and incubating for 48h in microaerophilic conditions. Nine (8.3%) positive samples 

out of 108 isolates failed to recover when defrosted and plated on mCCDA plates. The 99 

successfully retrieved colonies were packed at room temperature and sent by next day delivery 

to the Regional Laboratory for Public Health Kennemerland, Haarlem, the Netherlands, for 

PCR and HiMLST sequencing. DNA extraction was carried out in the Dutch laboratory 

according to their internal specification (Boers et al., 2012) and primers obtained from the 

PubMLST website http://pubmlst.org/campylobacter/info/primers.shtml were used to perform 

the PCR and HiMLST (Table 4.1). After species identification by PCR, MLST was performed 

to determine the STs of the isolates using the seven house-keeping genes based on the method 

outlined by Dingle et al., 2001 and modified by Miller et al., 2005. 

Statistical analysis 

The statistical analysis of results to determine the distribution of C. coli and C. jejuni across 

regions and estates was performed using the same approach as described in Chapter 3 section 

3.2. Campylobacter STs recovered from pheasant caecal samples were assigned to CCs by 

comparing the lists of STs and assigned CCs found in human, poultry, farmed animals, wild 

life and pet isolates downloaded from the PubMLST database 

http://pubmlst.org/perl/bigsdb/bigsdb.pl?db=pubmlst_campylobacter_isolates&page=query   

(last access on February 2015). 
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Primer Name Primer Sequence  Species 

aspA S3 SP6 tail GACACTATAGCCAACTGCAAGATGCTGTACC C. jejuni 

aspA S6 T7 tail CACTATAGGGTTCATTTGCGGTAATACCATC C. jejuni 

glnA S3 SP6 tail GACACTATAGCATGCAATCAATGAAGAAAC C. jejuni 

glnA S6 T7 tail CACTATAGGGTTCCATAAGCTCATATGAAC C. jejuni 

gltA S3 SP6 tail GACACTATAGCTTATATTGATGGAGAAAATGG C. jejuni 

gltA S6 T7 tail CACTATAGGGCCAAAGCGCACCAATACCTG C. jejuni 

glyA S3 SP6 tail GACACTATAGAGCTAATCAAGGTGTTTATGCGG C. jejuni 

glyA S4 T7 tail CACTATAGGGTGATTATCCGTTCCATCGC C. jejuni 

pgm S5 SP6 tail GACACTATAGGTTTTAGATGTGGCTCATG C. jejuni 

pgm S2 T7 tail CACTATAGGGTCCAGAATAGCGAAATAAGG C. jejuni 

tkt S5 SP6 tail GACACTATAGCTTAGCAGATATTTTAAGTG C. jejuni 

tkt S6 T7 tail CACTATAGGGAAGCCTGCTTGTTCTTTGGC C. jejuni 

uncA S3 SP6 tail GACACTATAGAAAGTACAGTGGCACAAGTGG C. jejuni 

uncA S4 T7 tail CACTATAGGGTGCCTCATCTAAATCACTAGC C. jejuni 

Aspcoli S1 SP6 tail GACACTATAGCAACTTCAAGATGCAGTACC C. coli 

Aspcoli S2 T7 tail CACTATAGGGATCTGCTAAAGTATGCATTGC C. coli 

Glncoli S1 SP6 tail GACACTATAGTTCATGGATGGCAACCTATTG C. coli 

Glncoli S2 T7 tail CACTATAGGGCTTTGGCATAAAAGTTGCAG C. coli 

Gltcoli S1 SP6 tail GACACTATAGATGTAGTGCATCTTTTACTC C. coli 

Gltcoli S2 T7 tail CACTATAGGGAAGCGCTCCAATACCTGCTG C. coli 

Glycoli S1 SP6 tail GACACTATAGTCAAGGCGTTTATGCTGCAC C. coli 

Glycoli S2 T7 tail CACTATAGGGCCATCACTTACAAGCTTATAC C. coli 

Pgmcoli S1 SP6 tail GACACTATAGTTATAAGGTAGCTCCGACTG C. coli 

Pgmcoli S2 T7 tail CACTATAGGGTTCCGAATAGCGAAATAACAC C. coli 

Tktcoli S1 SP6 tail GACACTATAGAGGCTTGTGTTTTCAGGCGG C. coli 

Tktcoli S2 T7 tail CACTATAGGGTGACTTCCTTCAAGCTCTCC C. coli 

Unccoli S1 SP6 tail GACACTATAGAAGCACAGTGGCTCAAGTTG C. coli 

Unccoli S2 T7 tail CACTATAGGGCTACTTGCCTCATCCAATCAC C. coli 
Table 4.1: Table of primers used by the laboratory in the Netherlands for PCR and sequencing 
of Campylobacter isolates.  

 

4.2.1 Polymerase chain reaction 

The same 99 isolates that were sent for sequencing at the laboratory in the Netherlands were 

subjected to diagnostic multiplex PCR at the Roslin Institute laboratory by the author of this 

project for internal validation of the Campylobacter isolates. Pure colonies were plated on 

mCCDA and incubated in microaerophilic conditions for two days. PCRs were performed 

using the Phuson DNA Polymerase (Thermo Scientific) in a reaction volume of 25µl, 

according to the manufacturer’s instructions. 1µl of template DNA solution in water was added 

to each reaction. This was obtained by heating a loop of bacteria collected from each mCCDA 
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plate. Primers used for species identification of C. coli and C. jejuni were based on detection 

of the lpxA gene (Klena et al, 2004). The forward primer of the lpxA gene for C. jejuni was 

(ACAACTTGGTGACGATGTTGTA). For the detection of the lpxA gene for C. coli the 

forward primer used was (GATAGTAGACAAATAAGAGAGAATMAG) (FSA, 2009). 

Reverse primers, lpxA-R1 (CAATCATGTGCGATATGACAATAYGCCAT) and lpxA-R2 

(CAATCATGAGCAATATGACAATAAGCCAT) were used to detect C. coli and C. jejuni 

and were used in a 50:50 mixture (FSA, 2009). The cycling conditions were as follows: 

• Initial denaturation for 45s at 94oC 

• Thirty cycles of denaturation for 45s at 94oC, annealing for 30s at 55oC and extension 

for 90s at 72oC  

• Final extension for 10 minutes at 72oC 

• Holding of the reaction at 4oC until use. 

Agarose gel electrophoresis was undertaken in 1% agarose gels, with 1:10,000 dilution of 

SybrSafe (Invitrogen, UK) and run at 80-100V for 45-90 minutes. Amplicon sizes were 

estimated by comparison with Thermo Scientific 1KD DNA ladder markers (Figure 4.1). 

 

Figure 4.1: Agarose gel electrophoresis of PCR products obtained from Campylobacter 
isolates. Lane 1 contains the 1KD DNA ladder, lane 2 shows C. coli (390bp) and lanes 3 and 
4 contain C. jejuni (330bp). Lane 5 contains the negative control. 

330bp390bp 
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4.3 Results and Data Analysis  

4.3.1 PCR results 

PCR yielded positive results for all 99 isolates confirming the detection of positive samples as 

Campylobacter spp. in the bacteriology laboratory and also that they belonged to either C. 

jejuni or C. coli species. Overall C. coli and C. jejuni accounted for 62.7% (CI 14.6% - 100%) 

and 37.3% (CI 0% - 85.3%) of positive samples tested, respectively. Region 5 yielded only 

three isolates for PCR detection, two of which were positive for C. coli and one of which was 

positive for C. jejuni. Table 4.2 summarises the PCR results by region, estate and 

Campylobacter spp. identified. 

 

 Region  1  Region 2   Region 3  Region 4  Region 5  Totals  
Samples 
collected 

56 56 55 60 60 287 

Positive 
samples 

29 25 20 30 4 108 

Number of 
isolates 
for PCR 

‡22 out of 
29 

25 out of 
25 

20 out of 
20 

29 out of 
30 

3 out of 4  99 

C. coli Ω 17 
 

IV25 ‡(15) 
IV36 (2) 

 
 

*77.3% 
 

†CI 54.6% 
- 92.2% 

3 
 

AB32 (2) 
AB34 (1) 

 
 

12% 
 

CI 25.5% 
- 31.2%    

14 
 

DD8 (2) 
FK15 (5) 
PH8 (7) 

 
70% 

 
CI 45.7% 
- 88.1% 

26 
 

TD11 (6) 
TD13 (18) 

TD5 (2) 
 

89.7% 
 

CI 72.6% 
- 97.8% 

2 
 

KA19 (1) 
KA29 (1)  

 
 

66.6% 
 

CI 9.4% - 
99.2% 

62  
 
 
 
 
 

62.6% 
 
 CI 14.6% 
- 100% 

C. jejuni 5 
 

IV25 (4) 
IV36 (1) 

 
 

22.7% 

22 
 

AB32 (7) 
AB34 (15) 

 
 

88% 

6 
 

DD8 (2) 
FK15 (1) 
PH8 (3) 

 
30% 

3 
 

TD11 (0) 
TD13 (3) 
TD5 (0) 

 
10.3% 

1 
 

KA19 (0) 
KA29 (1) 

 
 

33.4% 

37 
 
 
 
 

 
37.3% 

Table 4.2: Summary of PCR results showing number of isolates‡ (n) by region and estate and 
number of isolates Ω identified as C. coli or C. jejuni. Overall distribution* (%) and 95% 
Confidence Intervals† (CI) calculated using binary logistic regression. Distribution and CI by 
region was estimated using a standard CI calculation. 

   
           

Figure 4.2 below illustrates the prevalence of positive Campylobacter spp. isolates by estate, 

as identified using PCR. 
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Figure 4.2: Prevalence (%) of C. coli and C. jejuni species by estate, as identified using 
PCR. 

 

The percentage of C. coli was higher than that of C. jejuni across all regions, with the exception 

of region 2. A higher percentage of C. coli was also found in all estates sampled other than 

those in region 2, with the exception of estates DD8 and KA29, where the distribution was 

50% (CI 11.8% - 88.2%) for each species. Conversely, in region 2 C. jejuni was the more 

common species across the sampled estates. Binary logistic regression analysis across regions 

confirmed a statistically significant difference in the distribution of C. coli and C. jejuni 

(P<0.001) between region 2 and regions 1, 3 and 4 (Table 4.3). These results were confirmed 

by removing region 5 that, due to the low number of samples tested, can be considered a 

potential confounder. 

Region   Chi -Squared 41.39    P<0.001 Odds Ratio  95% CI 
2 1 0.040 ( 0.008,   0.191) 
3 1 0.686 ( 0.172,   2.732) 
4 1 2.549 ( 0.537,  12.087) 
5 1 0.588 ( 0.043,   7.914) 
3 2 17.111 ( 3.670,  79.767) 
4 2 63.555 (11.633, 347.217) 
5 2 14.666 ( 0.999, 215.309) 
4 3 3.714 ( 0.803,  17.164) 
5 3 0.857 ( 0.064,  11.356) 
5 4 0.230 ( 0.015,   3.370) 

Table 4.3:  Binary logistic regression analysis to estimate statistically significant differences in 
the level of infection among regions. Statistically significant differences are highlighted in bold. 
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An analysis of the results based on the sampling sites also indicated statistically significant 

differences (P<0.001) in the Campylobacter spp. recovered. The differences mirrored those 

observed across the regions in that the presence of C. jejuni recovered from sampling site 2 

was consistently higher than that from the other sampling sites. Statistical analysis of the 

distribution of Campylobacter spp. recovered across estates within the same region confirmed 

the prominence of one of the two species in each region (Region 1 P=0.650; Region 2 P=0.249; 

Region 3 P=0.531; Region 4 and 5 P value not available because of the lack of C. jejuni 

infection in estates TD11, TD5 and KA19.  

4.3.2 MLST results 

Sequence types analysis 

Of the 99 isolates sent for DNA sequencing, a ST was only assigned in 80 because, for 19 

(19.2%) isolates, one or more alleles failed to amplify when subjected to the MLST test. 

Nineteen STs were detected by MLST across the data set (n=80). Eleven (57.9%; CI 33.5% - 

79.7%) were consistent with C. jejuni and eight (42.1%; CI 20.3% - 66.5%) were consistent 

with C. coli species. Sequence Type 828 (n=19; 23.75%; CI 14.9% - 34.6%) was the most 

common in the 80 samples tested, followed by ST827 (n=12; 15%; CI 8% - 24.7%) and ST19 

(n=7; 8.75%; CI 3.6% - 17.2%) which collectively represented 47.5% (CI 36.2% - 59%) of 

the entire data set. Five STs (6.25%; CI 0.3% - 6.8%) appeared only once and six STs (15%; 

CI 0.3% - 8.7%) appeared twice (Figure 4.3).  

 

 
Figure 4.3: Prevalence (%) of the 19 Sequence Types found across the data set (n=80), 
illustrating whether they belonged to C. jejuni or C. coli species. 
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The distribution of STs by region and by estate is shown in Figures 4.4 and 4.5, respectively.  

 

Figure 4.4: Distribution (%) of Sequence Types (ST) by region. 

 

 

 
Figure 4.5: Distribution (%) of Sequence Types (ST) by estate. 
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Three out of five STs that appeared only once were recovered from region 2; two from estate 

AB32; and one from AB34. All five were C. jejuni. 

Clonal Complexes analysis 

Fourteen of the 19 STs (73.6%; CI 48.8% - 90.9%) found were grouped into six Clonal 

Complexes (CCs) while the remaining five STs (26.3%; CI 9.1% - 51.2%) were unassigned to 

any CCs (orphan STs) (STs 1030, 2195, 4002, 4254 and 7063). Furthermore, orphan STs 4002, 

4254 and 7063 were not present in human, poultry, farmed animals, wild life or pet isolates 

uploaded on the PubMLST database. Clonal complex ST-828 alone represented 57.5% (n=46; 

CI 45.9% - 68.5%) of the 80 assigned isolates and together with the other two most frequent 

CCs, ST-21 (n=9; 11.2%; CI 5.3% - 20.3%) and ST-1034 (n=6; 7.5%; CI 2.8% - 15.6%), 

represented 76.3% (CI 65.4% - 85.1%) of the data set. Sequnce Types that were not assigned 

to any CC represented 15% (n=12; CI 8% - 24.7%) of the isolates (Figure 4.6).  

 

Figure 4.6: Distribution (%) of Clonal Complexes in 80 Campylobacter isolates from pheasant 
caecal samples with a summary of Sequence Types (ST) (*= ST not assigned to a CC). 

 

Figure 4.7 shows the distribution of CCs by region and estate. 
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Figure 4.7: Distribution (%) of Clonal Complexes (CC) by region and estate (NA= Not 
assigned to a CC). 

 

Regional analysis 

There was a statistically significant difference (P<0.001) in the CCs represented in region 2 

compared to those in regions 1, 3 and 4 (Table 4.4). Similar results were obtained by removing 

region 5 that, due to the low number of isolates (n=3) was considered a potential confounder. 

Binary logistic regression performed on regions 1, 3 and 4 confirmed statistically that CC ST-

828 was the most represented (P=0.120) in these regions. 

 

Region   Chi -Squared 27.64   P<0.001 Odds Ratio  95% CI 
2 1 0.012 (0.001,   0.137) 
3 1 0.166 (0.017,   1.584) 
4 1 0.153 (0.017,   1.393) 
5 1 0.076 (0.002,   2.394) 
3 2 13.000 (2.735,  61.786) 
4 2 12.000 (2.709,  53.139) 
5 2 6.000 (0.290, 124.099) 
4 3 0.923 (0.254,   3.342) 
5 3 0.461 (0.024,   8.693) 
5 4 0.500 (0.027,   9.076) 

Table 4.4:  Binary logistic regression analysis to estimate any statistical difference in CCs 
represented among regions assuming that CC ST-828 was the most frequently represented. 
Statistically significant differences are highlighted in bold. 

CC 
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Region 1: 92.9% (n=13; CI 66.1% - 99.8%) of isolates (n=14) belonged to ST-828. Sequence 

Type 4254, recovered from estate IV36 and not assigned to a CC, belonged to the species C. 

jejuni. 

Region 2: Isolates were very varied, consisting of nine STs in six different CCs and two orphan 

STs (1030 in AB34 and 7063 in AB32) both belonging to the species C. jejuni. Clonal 

Complex ST-21 (n=8; 38.1%; CI 18.1% - 61.6%) was the most frequently represented 

followed by CC ST-48 (n=3; 14.3%; CI 3% - 36.3%) and ST-1034 (n=3). Clonal complex ST-

828 (n=3) accounted for all the C. coli species isolated in this region. 

Region 3: CCs ST-45 (n=1), 1034 (n=1) and 48 (n=1) represented 15.7% (CI 3.8% - 39.6%) 

of the isolates. Two orphan STs, ST4002 (n=2) and ST7063 (n=1), had an overall prevalence 

of 15.7%. Both isolates belonging to ST4002 were found in estate PH8, while ST7063 was 

recovered from estate FK15. 68.4% (n=13; CI 43.4% - 87.4%) of isolates in this region 

belonged to CC ST-828. This was found in all three estates sampled, with 80% (n=4; CI 28.4% 

- 99.5%) presence in estate FK15, 70% (n=7; CI 34.8% - 93.3%) in estate PH8 and 50% (n=2; 

CI 6.8% - 93.2%) in estate DD8. 

Region 4: Region 4 also had a high percentage of CC ST-828 (n=16, 66.7%; CI 44.7% - 

84.4%) with 100% presence in estates TD11 (n=4; 95% Lower CI >47.3%) and TD5 (n=1; 

95% Lower CI >0.5%). The orphan ST2195 accounted for 33.3% (n=6; CI 13.3% - 59%) of 

isolates from estate TD13 and this ST contributed 25% (CI 9.8% - 46.7%) of the total isolates 

from this region. Clonal complex ST-21, found in estate TD13, accounted for 4.2% (n=1; CI 

0.1% - 21.1%) of isolates recovered in this region. 

Region 5: Region 5 yielded only two isolates, one belonging to CC ST-828 and the other to 

CC ST-1034, both originating from estate KA29. 

 

4.4 Discussion 

Polymerase Chain Reaction results confirmed a higher presence of C. coli (62.7%) compared 

to C. jejuni (37.3%) in caecal content of pheasants in Scotland.  In their Italian survey, Dipineto 

(2008a) reported that 100% (n=104) of cloacal swab isolates subjected to PCR were identified 

as C. coli, with 13.5% also positive for C. jejuni.  In contrast, Nebola (2007) reported that C. 

jejuni was more prevalent (n=54: 58%) than C. coli (36%) in wild pheasants in the Czech 

Republic, with mixed infection in 5% of birds examined. However, the same study also 
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reported that in farmed pheasants (n=211) 51% of isolated strains were C. coli and 41% were 

C. jejuni. This discrepancy in results may reflect the varying sources of infection to which 

pheasants on different estates or farms are exposed, since cattle, sheep and chickens are major 

reservoirs and shedders of Campylobacter spp. and they are associated with different 

Campylobacter spp. (Sheppard et al., 2010).  The next chapter will expand on host association 

of Campylobacter spp. found in pheasants in Scotland. 

Campylobacter coli was more widespread than C. jejuni in all Scottish regions surveyed, with 

the exception of region 2. Similarly, C. coli was the predominant species across all estates and 

sampling sites when region 2 was excluded from the analysis. Forbes (2009) sampled seven 

pheasants from the North East of Scotland (region 2) and found that 57% were positive for C. 

jejuni (FSA, 2009). However, a study carried out across north-eastern and south-western of 

Scotland on Campylobacter isolates from cattle and sheep faeces did not find a statistically 

significant regional difference between the two species (Rotariu et al., 2009). Chapter 5 will 

investigate the regional inference of different animal hosts on pheasant infection. 

The statistical analysis of this study also confirmed that, across regions, there is a significant 

prevalence of either C. coli or C. jejuni over the other. In particular C. coli dominates in regions 

1 and 3 while C. jejuni prevails in region 2. The same pattern is evident at estate level. Rotariu 

(2009) reported that cattle and sheep isolates were more likely to be genetically similar if they 

originated within rather than between farms. This result supports the supposition that recycling 

of Campylobacter spp. in the farm or estate is an important way of sustaining infection 

between individual animals (Humphrey et al., 2007). 

Nineteen STs were isolated from positive caecal samples of pheasants with STs 828, 827 and 

19 representing 47.5% of the isolates tested. Fourteen STs were assigned to six CCs and five 

STs were not assigned to any CC when compared to isolates uploaded on the PubMLST 

database. Three out of five orphan STs were novel to the PubMLST global list of STs in 

February 2015. This confirms observations in the study by Forbs (2009)  that suggest there is 

a large pool of Campylobacter strains present in Scotland that are not only continually 

evolving by mutation and recombination, but are being expanded by externally derived strains  

from migrating wildlife,  human travel and trade. However, wild game birds are thought to be 

less likely to generate new STs compared to gull and other waterfowl (FSA, 2009). 

Clonal Complex ST-828 was the most represented (57.5%) and, together with ST-21 and ST-

1034, represented 76.3% of all isolates.  Seven out of eight C. coli STs belonged to CC ST-

828. The eighth was an orphan ST, designated ST2195. Clonal complex ST-21 included three 
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STs, while the other CCs contained only one ST each. 15% of STs recovered were not assigned 

to any CC and, taken collectively, were exceeded in frequency only by CC ST-828 (Figure 

4.6). With the exception of ST2195 all other orphan STs belonged to C. jejuni species. As 

already reported in the literature, this study suggests that C. coli strains are quite conserved 

genetically compared to C. jejuni. Phylogenetic studies on C. coli have identified only three 

clades and the variation of genotypes within the same clade usually results from a re-

assortment of existing alleles rather than from the formation of new ones by point mutation 

and there is little evidence of genetic recombination among clades (Sheppard et al., 2008 and 

2010). 

Clonal complexes present in clade 1 are usually associated with animal sources while clades 

2 and 3 are associated with CCs recovered from environmental waters (Sopwith et al., 2009). 

Clonal complex ST-828 belongs to clade 1 and although STs included in this CC are 

genetically very similar, mismatching for one allele only, there is still enough variation to 

identify possible correlation with different animal hosts (Miller et al., 2006). Conversely, C. 

jejuni is characterised by a deep branching phylogenetic structure that is typical of higher 

genetic variability compared to C. coli due to extensive recombination that generates a wide 

assortment of STs belonging to different CCs.  

Further phylogenetic study on orphan STs, especially those not recovered from isolates 

uploaded on the PubMLST database, may shed more light on their origins, possibly 

highlighting additional sources of contamination for pheasants and enabling us to predict the 

likelihood of a threat to public health in the future. 

The next chapter will explore the host association of CCs found in pheasants with the main 

farm animal species, in order to determine if there is any risk of cross contamination between 

species at estate and/or regional level and also to investigate the contribution of pheasant 

campylobacteriosis to human infection. 
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Chapter 5 Host association and source attribution 

 

5.1 Introduction 

Host association is the process by which sequence typing of isolates can provide evidence for 

an association with specific hosts (FSA, 2009). For Campylobacter spp., several studies 

carried out in the UK and Northern Europe have shown an association between Campylobacter 

CCs and various animal hosts; a summary of the literature review findings is provided in Table 

5.1. 

In these previous studies the host association analysis was carried out at a CC level because 

the limited number (few hundreds) of samples collected from environmental sources did not 

allow statistical analysis to be carried out at ST level (FSA, 2009). They also suggested that 

some CCs are strongly associated with a particular animal species, for example CC ST-828 is 

often associated with sheep, CC ST-61 with cattle and CC ST-45 with poultry, but other CCs 

can be found in multiple animal hosts (e.g. CCs ST-21, ST-42 and ST-45). As such, host 

association of Campylobacter CCs is the first step in attributing human clinical cases to 

different sources of infection.  

Source attribution is an important tool in scanning surveillance and outbreak investigations 

but it is also valuable in developing effective food safety interventions (Havelaar et al., 2007; 

EFSA, 2013). It has been defined by Pires (2009) as: “the portioning of the human disease 

burden of one or more foodborne infections to specific sources, where the term source includes 

animal reservoirs and vehicles, e.g. foods”. It also covers exposure of humans to different 

pathways of infection, for example from the environment or arising from different types of 

consumer behaviour (EFSA, 2013). Source attribution is part of the exposure risk assessment, 

one of the key steps in the risk analysis process. In particular, it gives a qualitative and/or 

quantitative evaluation of the likely exposure to hazards via different sources (CAC, 2011). 

Different methods can be used for source attribution. In this project we used the microbial 

subtyping approach that compares the distribution of Campylobacter STs in pheasant caecal 

samples with the ST distribution in humans and other farm animal species and quantifies the 

association and contribution of the STs found in animal sources to human infections. This 

method has been used for source attribution of Campylobacter infection in humans in Scotland 

(Strachan et al., 2009) and New Zealand (Muellner et al., 2013). Campylobacter subtyping by 

MLST has high discriminatory power for identifying strong associations between STs in 

human clinical cases and those found in different sources of infection (EFSA, 2013). The 
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discriminatory power is the average probability that a particular laboratory test will assign a 

different type to two unrelated strains randomly sampled in the microbial population of a given 

taxon (Hunter, 1990). In particular, the high discriminatory power of MLST for detecting 

Campylobacter STs is based on the seven genetic loci that are highly conserved within the 

Campylobacter genome and that allows for a high degree of discrimination between STs. 

 

Species  CC Host  Reference  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
C. jejuni 

 
 
 

45 

 
Broilers 

Colles et al., 2003 
Manning et al., 2003 
Strachan et al., 2009 

Wild birds, rabbits Strachan et al., 2009 
French et al., 2005 
Kwan et al., 2008a 

 
 
 

42 

Cattle, sheep Colles et al., 2003 
Strachan et al., 2009 

Sheep Manning et al., 2003 
 
Cattle 

Kwan et al., 2008b 
FSA, 2009 
Rotariu et al., 2009 

 
 
 

48 

Cattle, sheep Colles et al., 2003 
Cattle, sheep, broilers Strachan et al., 2009 
 
Cattle 

Manning et al., 2003 
Kwan et al., 2008a 
FSA, 2009 

Cattle, sheep Rotariu et al., 2009 
 
 
 

61 

 
Cattle, sheep 

Colles et al., 2003 
FSA, 2009 and Strachan et al., 
2009 

 
Cattle 

Manning et al., 2003 
Kwan et al., 2008a,b 
French et al., 2005 
Rotariu et al., 2009 

 
21 

 
All sources 

Colles et al., 2003 and Strachan 
et al., 2009 

Cattle Kwan et al., 2008a,b 
220 Wild birds (pigeon) FSA, 2009 and Strachan et al., 

2009 
257 Broilers Manning et al., 2003 

Strachan et al., 2009 
283 Broilers Manning et al., 2003 
403 Pigs Manning et al., 2003 
1034 Sheep Rotariu et al., 2009 
1275 Wild birds (gulls) FSA, 2009 

 
C. coli 

 
828 

Sheep  Strachan et al., 2009 
Sheep, pigs FSA, 2009 
Sheep, cattle Rotariu et al., 2009 

Table 5.1: Summary of literature review of host association of the main C. jejuni and C. coli 
clonal complexes (CC) with farm animal species and wild birds in the UK and Northern Europe. 
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Several studies have been conducted in different countries including the UK, New Zealand, 

Finland and the US that confirm the overlapping of Campylobacter STs found in poultry, 

cattle, sheep and pigs with STs found in human clinical cases; a detailed overview is available 

from Forbes (2009) and EFSA (2013). Overall, these studies point out that cattle, sheep and 

poultry are likely to be the main sources of human campylobacteriosis, while pigs play a minor 

role as a source for human C. coli infection. These studies also suggest that consumption of 

poultry meat is strongly associated with human infection in urban and suburban areas, while 

direct contact with cattle and sheep is the main source of human infection in rural areas. 

Strachan (2009) investigated the attribution of Campylobacter infection in humans in the 

Northeast of Scotland (region 2) to different animal sources. This study confirmed that young 

children are mostly affected by Campylobacter infection, as already reported by Gillespie 

(2009) in England and Wales. The source of infection in rural areas, although not clearly 

understood, was thought to be environmental (e.g. contact with farm animals, birds or 

contaminated water) rather than direct consumption of poultry meat. In adults, Campylobacter 

infection appeared to be food-related, though resulting from the consumption of contaminated 

fresh produce (e.g. vegetables) or raw milk, rather than poultry meat. The study also confirmed 

findings from previous work suggesting that, although there was a high number of pigs reared 

in rural areas (n=278,000), their contribution to human campylobacteriosis was minimal 

(Strachan et al., 2009).  

For the purpose of this study a host association between CCs found in pheasants and other 

farm animal species could not be performed due to the lack of contemporary data. However, 

it was possible to perform a host association analysis of the prevalence of Campylobacter in 

pheasants and relate it to the density of the main farm animal species present in the same post 

code areas. Source attribution of Campylobacter STs recovered from pheasant caecal samples 

in Scotland was performed to quantify the contribution to human campylobacteriosis. 

 

5.2 Materials and methods 

5.2.1 Host association 

Host association of the Campylobacter spp. in pheasants in Scotland was performed by 

comparing the geographical distribution of the number of cattle, sheep and goats, pigs, broilers 

and poultry other than chickens (i.e. duck, geese and turkeys) in relation to the post code areas 

of the estates where pheasant samples were collected. 
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The number of cattle, sheep and goats, pigs, broilers and other poultry, hereafter “farm 

animals”, was obtained by accessing the EDINA agcensus website 

http://edina.ac.uk/agcensus/ in February 2015. From the agcensus website it was possible to 

download the number of farm animal species of interest present in Scotland in 2013 in a 2 x 

2km grid square. The number of farm animals was exported to an Excel spreadsheet that also 

included the easting and northing of all the points in the grid from which farm animal numbers 

were collected. 

The ArcGIS 10.3.1 (©1999-2015 Esri Inc.) software was used to illustrate and elaborate upon 

the density of the farm animals in the postcode areas from which pheasant samples were 

collected. Prior to importing the data from the agcensus website into the ArcGIS software, the 

base map of Scotland was imported from the Ordinance Survey (OS) Open background 

(©Crown Copyright and Database Right 2015). At this point the Excel spreadsheet from the 

agcensus website was imported into the software and the ArcGIS was able to visualise all the 

data points by coordinates on the map of Scotland. Figure 5.1 (a, b, c, d, and e) maps the 

density of farm animals in Scotland, as of 2013. 

To enable resolution at post code level, the nationalrecordofscotland.gov.uk website was 

accessed in August 2015 and the file encompassing the map of post code areas in Scotland, 

current as of 2014, was downloaded. This file was then uploaded to the ArcGIS software to 

enable visualisation of postcode districts. The intersected data option on the ArcGIS software 

gave the opportunity to merge and extract the information on the number of farm animals from 

the agcensus spreadsheet in relation to the postcode areas of interest for this study (Figure 5.2). 
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Figure 5.1a:  Cattle density in Scotland 

 

Cattle are mainly concentrated in the Northeast (region 2) and Southwest of Scotland (region 
5). 
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Figure 5.1b:  Sheep and goats density in Scotland 

 

Sheep are widely spread all over the country but are mainly concentrated in the Northeast 

(region 2), the Central and Eastern parts of the central belt (region 3) and the South of Scotland 

(region 4 and 5). 
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Figure 5.1c:  Pigs density in Scotland 

 

Pig farms are scattered in low numbers across Scotland but the higher density can be found 

along the Eastern coast (region 2, 3 and 4). 
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Figure 5.1d:  Broilers density in Scotland 

 

Main broiler farms also can be found along the Eastern coast of Scotland (region 2, 3 and 4).  
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Figure 5.1e: Poultry (other than chickens) density in Scotland 

 

Poultry farms other than chickens can be found in low numbers mainly in the Northeast and 

South of Scotland. 
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Figure 5.2: Distribution of the data points of farm animals within the postcode areas from 
which pheasant samples were collected. 

 

The number of farm animals per square kilometre (km) was exported into an Excel file for 

further statistical analysis. 
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The statistical analysis aimed to investigate the host association between farm animal density 

and prevalence of Campylobacter spp. in pheasants in the same postcode areas and was 

performed using a binary logistic regression calculation in Minitab. Results were considered 

to be statistically significant if the overall P value was <0.05 and the 95% Confidence Interval 

Odds Ratio between groups did not cross 1. 

5.2.2 Source attribution 

Attribution of human clinical Campylobacter isolates to animal sources of infection was 

undertaken by downloading the lists of STs found in humans, farm animals and wildlife 

isolates from the PubMLST on-line database (last access on February 2015) 

http://pubmlst.org/perl/bigsdb/bigsdb.pl?db=pubmlst_campylobacter_isolates&page=query. 

The list of STs found in the pheasant samples from this study was added to the PubMLST lists 

and source attribution was performed using arithmetic and graphical functions in Microsoft 

Excel. 

As indicated in section 5.1, source attribution is used as a means of investigating any 

associations between the presence of Campylobacter contaminants in various sources with 

human infections.  This is done by evaluating the distribution of STs (not CCs) in humans and 

in different potential sources of infection in such a way that enough discriminatory power is 

generated to identify a strong association between human campylobacteriosis and their sources 

of infection (Pires, 2009).  Use of STs was possible instead of CCs because there was no 

sample size limitation as described in section 5.1 for host association statistical analysis. In 

fact the PubMLST databases provided a total of 12743 human (n=9646), farm animal (n=3021) 

and wild bird (n=76) isolates. There were 1665 STs identified from human clinical cases and 

reported on the PubMLST website in February 2015. For the purpose of this study, only 56 of 

the most common STs were selected from those 1665 isolates for further consideration as they 

included 12 STs found in pheasants. These 56 STs accounted for 69% of all the human cases. 

Human cases attributed to STs 831 (n=8), 2195 (n=7), 1541 (n=6) and 1030 (n=2) were also 

taken into consideration because, although not very common in humans, they were the 

remaining STs recovered from pheasants in this study. Source attribution of farm animals and 

pheasants to human infections, based on the isolates reported to the PubMLST database, was 

performed by examining only the STs that were common to humans, farm animals, pheasants 

and wild game species. The number of clinical isolates from humans and animals that shared 

the same STs was extracted for each species group.  Each animal species contribution was 

calculated as a percentage of the overall number of human and animal cases that shared the 

same STs.  A similar calculation was performed to determine the contribution of each animal 
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species to the overall number of Campylobacter cases. An example of the calculations 

performed to determine the contribution of each animal source to human campylobacteriosis 

is as follows: 

Cattle and humans shared 22 STs from the PubMLST database. This translated into 4036 

human and 276 cattle isolates attributed to the shared STs. This resulted in a total of 4312 

human and cattle isolates. The percentage of the proportion of cases attributed to cattle was 

calculated by multiplying the number of isolates in cattle by 100 and dividing this number by 

the total number of isolates found in humans and cattle (276 x 100 / 4312 = 6.4%). To 

determine the contribution of cattle to the overall infections in humans, the total number of 

human isolates (n=6712) from the 60 STs considered was added to the number of isolates in 

cattle then the percentage of the proportion of cases attributed to cattle was calculated as above 

(276 x 100 / 6988  = 3.9%). 

 

5.3 Results and Data Analysis 

5.3.1 Host association 

After plotting the density of farm animals in Scotland, it was possible to extract their counts 

per square km in the post code areas from which samples from pheasants were collected (Table 

5.2.) 

Post C ode 
Area 

Area 
(Square Km)  

Cattle  Sheep and 
Goats 

Pigs  Broilers  Other Poultry  

AB32 101 56 89 14 0 4 

AB34 345 26 61 0 0 0 

DD8 817 25 65 11 430 1 

FK15 178 17 135 0 0 0 

G66 95 29 141 0 0 0 

IV25 155 8 73 17 0 1 

IV36 394 20 48 5 370 0 

KA19 281 65 194 0 0 0 

KA29 121 1 12 0 0 0 

PH8 407 6 99 0 29 0 

TD11 478 34 230 30 19 1 

TD13 60 42 284 74 0 1 

TD5 422 39 194 0 224 0 

Table 5.2: Number of farm animals per square kilometre (km) in post code areas from which 
pheasant samples were collected. 
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A binary logistic regression calculation was performed to determine statistically if there was 

an association between the prevalence of Campylobacter infection in the pheasants sampled 

in this study and the density of different farm animal species in the same post code areas. 

Results are shown in Figure 5.3 (a, b, c, d and e). 

 

 

 

Figure 5.3a: Cattle                                           
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Figure 5.3b: Sheep and goats 

 

 

Figure 5.3c: Broilers 
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Figure 5.3d: Poultry (other than chickens) 

 

Figure 5.3e: Pigs 

Figure 5.3 (a, b, c, d and e): Binary logistic regression analysis to estimate any statistical 
association between prevalence of Campylobacter infection in pheasants (%) and number per 
square kilometre (sq/km) of cattle (Figure 5.3a), sheep and goats (Figure 5.3b), broilers 
(Figure 5.3c), poultry other than chickens (Figure 5.3d) and pigs (Figure 5.3e) in the post code 
areas where pheasants were sampled. 
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The statistical analysis indicated no significant association between the densities of cattle 

(P=0.245) and sheep and goats (P=0.137) and Campylobacter infection in pheasants sampled 

in the same post code areas. However, the density of pigs (P<0.001), broilers (P=0.012) and 

poultry other than chickens (P=0.015) showed a weak but statistically significant association 

with Campylobacter infection in pheasants (Table 5.3). 

 

Farm Animal Species  Odds ratio  95% CI 
Pheasants vs Cattle 0.992 (0.979, 1.005) 
Pheasants vs Sheep and Goats 1.002 (0.999, 1.005) 
Pheasants vs Pigs  1.033 (1.020, 1.046) 
Pheasants vs Broilers  0.997 (0.995, 0.999) 
Pheasants vs Poultry  1.341 (1.057, 1.702) 

Table 5.3:  Binary logistic regression analysis to estimate any statistical association between 
prevalence of Campylobacter infection in pheasants and density of farm animals per square 
kilometre. Statistically significant associations are highlighted in bold. 
 

A binary logistic regression analysis to estimate any association between the Odds Ratios of 

C. jejuni to C. coli and farm animal species in the same post code areas could not be performed 

because C. jejuni predominated in the post code areas of region 2. 

5.3.2 Source attribution 

 The 60 STs used for source attribution in this study accounted for 70% of human cases 

reported on the PubMLST database. The relative proportions of the 60 STs found in the human 

clinical isolates database was plotted in descending order. To illustrate how common these 

STs were in farm animals and wild bird sources, their relative proportions as obtained from 

the PubMLST database was staked in the same graph (Figure 5.4). 

Sequence type 21 was the most common ST (n=729) found in human clinical cases and 

accounted for 7.6% of the total human infections. Sequence type 257 (n=595; 6.2%), ST48 

(n=447; 4.6%), ST50 (n=407; 42%) and ST45 (n=356; 3.7%) followed in descending order 

and together accounted for 26% of human clinical cases.  

Sequence type 21 was recovered from cattle, sheep, chickens, wild birds and poultry other 

than chickens. However, cattle and sheep contributed 8.3% (n=48) and 8.8% (n=22), 

respectively, to all infections attributed to ST21 while chickens only contributed 2.1% (n=36) 

of those infections. Conversely, ST257 was quite common in chickens (6.1%; n=103) and less 

so in cattle (1.6%; n=9) and sheep (1.2%; n=3). 
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Figure 5.4:  The X-axis lists the 56 most common Campylobacter sequence types (STs) found in human isolates and four STs found in pheasants but 
not common in humans. The Y-axis shows in proportion (%) how common each ST is in human isolates (n= 9646), farm animals and wild bird sources 
(cattle (n=578), pheasants (n=80), sheep (n=249), pigs (n=88), chickens (n=1696), wild birds (n=76) and poultry other than chickens (n=410)) as sourced 
from the PubMLST database including STs isolated from pheasant samples. 
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Figure 5.5a:  The X-axis lists the 56 most common Campylobacter sequence types (STs) found in human isolates and four STs found in pheasants but 
not common in humans. The Y-axis shows each ST as a proportion (%) of all cases of Campylobacter infection taken as a whole (in humans, cattle, 
pheasants, sheep, pigs, chickens, wild birds and poultry other than chickens (n=12823)), as sourced from the PubMLST database including STs isolated 
from pheasant samples. 
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Figure 5.5b:  The X-axis lists the 56 most common Campylobacter sequence types (STs) found in human isolates and four STs found in pheasants but 
not common in humans. The Y-axis shows each ST as a proportion (%) of all cases of Campylobacter infection taken as a whole (in cattle, pheasants, 
sheep, pigs, chickens, wild birds and poultry other than chickens (n=3177)) but excluding humans, as sourced from the PubMLST database including 
STs isolated from pheasant samples.
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Sequence type 48 is present in similar proportions in cattle (1%; n=6), sheep (1.6%; n=4) and 

chicken isolates (1.2%; n=20) but is also present in pheasants (5%; n=4). 

Sequence type 45 is common in chickens (6.5%; n=110) and even more frequent in poultry 

other than chickens (13.4%; n=55) but has also been recovered from cattle (1.9%; n=11), sheep 

(2.8%; n=7) and wild bird (2.6%; n=2) isolates. 

Although eight STs recovered from pheasants are also among the most common in human 

infections (e.g. STs 19, 48, 51, 53, 262, 583, 825 and 827), eight STs are less common in 

humans and other animal species, with the exception of sheep and chickens (STs 828, 830, 

831, 962, 1030, 1541, 1709 and 2195). Three STs recovered from pheasants (STs, 4002, 4254 

and 7063) have not been isolated from human clinical cases at all on the PubMLST database. 

Figure 5.5a shows the overall proportions of STs recovered from all cases of Campylobacter 

infection in human, farm animal, pheasant and wild bird isolates from the PubMLST database 

and the pheasant samples from this study (n=12823). The vast majority of isolates are from 

human infections (n=9646) but it is also possible to identify how animal sources of human 

infection contribute to the STs reported to the PubMLST database. A more detailed summary 

of the contribution of farm animal sources of infection to humans, excluding human isolates, 

is illustrated in Figure 5.5b. Chicken, cattle and sheep isolates (n=2523) collectively 

contributed 79% of the non-human isolates. 

Table 5.4 below summarises the source attribution performed on human (n=6712), farm 

animal (n=1269), pheasant (n=75) and wild game (n=15) isolates from the 56 more common 

Campylobacter STs found in humans and the additional four STs found in pheasants. 

Animal 
source 

Number of 
human isolates 
sharing the 
same STs with 
animal sources 

Number of 
animal 
isolates 
sharing the 
same STs 
with humans 

Attribution  (%) 
of animal 
sources to 
human 
infection from 
shared STs 

Overall 
attribution (%) of 
animal sources 
to human 
infection 

Cattle  (22) 4036 276 6.4 3.9 
Sheep (19) 4215 170 3.8 2.5 
Pigs  (2) 57 7 11 0.1 
Chicken s (45) 6097 750 11 10 
Wild birds  (10) 1765 15 0.8 0.2 

Poultry  (6) 2275 66 2.8 1 
Pheasant s (16) 1666 75 4.3 1.1 

Table 5.4: Source attribution (%) of human isolates to animal sources based on the PubMLST 
database including STs isolated from pheasant samples. (n)=number of shared STs between 
humans and animal source. 
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As a species group, cattle accounted for 22 of 60 STs that are a potential source of human 

campylobacteriosis. Those 22 STs accounted for 6.4% of all isolates common to humans and 

cattle and 3.9% to human infections overall. 

Sheep shared 19 of 60 STs with human clinical isolates and 15 STs with cattle. Those 19 STs 

accounted for 3.8% of all isolates common to humans and sheep and 2.5% to human infections 

overall.  

In the PubMLST database, pig STs were rarely found in humans, since they were only 

recovered from isolates containing STs 403 and 270. They accounted for only 0.1% of human 

infections overall, however, as a proportion of human and pig cases caused by STs 403 and 

270, pigs accounted for 11%. 

Chickens shared 45 of 60 STs with human cases and these were responsible for more than 

6000 human cases. Chickens contributed to 11% of human and chicken infections resulting 

from shared STs and contributed to 10% of human infections overall. 

Wild birds shared 10 of 60 STs with human cases and contributed to 0.8% of human and wild 

bird campylobacteriosis cases due to these shared STs. They only accounted for 0.2% of 

human infections overall. 

Poultry other than chickens had six STs responsible for human infections and these contributed 

to 1% of the human cases overall. 

Pheasants are a potential source of 16 out of 60 STs that are responsible for human infections. 

They contributed to 4.3% of human and pheasant cases caused by these shared STs and they 

accounted for 1.1% of the human infections overall.  

 

5.4 Discussion 

This study did not find a statistically significant host association between the prevalence of 

infection in pheasants and the density of cattle, sheep and goats in Scotland. However, 

previous studies (Strachan et al., 2009; FSA, 2009; Rotariu et al., 2009) have suggested a 

strong association between the CC ST-828 (C. coli), the most prevalent in pheasants sampled 

in this project, and sheep. Analysis of the PubMLST database including pheasant samples also 

indicates that pheasants and sheep can both be infected by four C. jejuni STs (STs 19, 48, 53 

and 262). Transmission of Campylobacter infection between these species is possible because 
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they are usually reared in the same estates, sharing contaminated grassland and/or water 

sources. Host association of Campylobacter infection between pheasants and sheep is evident 

in all Scottish regions where this study found a statistically significant predominance of CC 

ST-828 in pheasants with the exception of region 2. In region 2 the abundance of C. jejuni 

infection in pheasants suggests a shared association with cattle and sheep. Although cattle and 

pheasants are common hosts for six STs (STs 19, 48, 53, 262, 583 and 827), all belonging to 

the CC ST-21, four of them are not exclusive to cattle but also occur in sheep (STs 19, 48, 53 

and 262). Sequence types recovered from pheasants in region 2 from this study were STs 19, 

48, 262, 583 and 827. Therefore, the most likely route of transmission of Campylobacter 

infection from STs 19, 48 and 262 to pheasants is either from cattle or sheep, while ST583 and 

827 seem more likely to originate from cattle. However, more studies are needed to clarify the 

routes of transmission between cattle, sheep and pheasants. Other STs recovered from 

pheasants in region 2 were STs 1030, 1709 and 7063. Sequence type 1030 has been recovered 

from human and chicken isolates; ST1709 is only present on the list of STs recovered from 

human isolates and not from other farm animal species; ST7063 is so far unique to pheasants 

on the PubMLST database. Unpublished results from a study carried out by Forbes in 2006 on 

five pheasants collected in Aberdeenshire (region 2) detected the presence of STs 45 (n=2) 

and 262 (n=3) belonging to CCs ST-45 and ST-21, respectively. CC ST-45 is commonly found 

in chickens and wild birds, while CC ST-21 is mainly linked to cattle and sheep. These findings 

indicate that CC ST-21 in cattle and sheep in region 2 seems to play an important role in the 

circulation of C. jejuni between farm animals, pheasants and humans, as reported by Strachan 

(2009). 

The results of the statistical analysis from this study indicated an association (P<0.001) 

between Campylobacter infection in pheasants and density of pigs and poultry other than 

chickens (P=0.015) but the reasons for these associations remain unknown. Pigs can 

contaminate the environment if reared outdoors but they are very unlikely to be present in 

great numbers in the same estates that are used for shooting pheasants. Furthermore, pigs are 

mostly infected by C. coli species, as observed in pheasants, but the specific STs recovered 

from pheasants, although belonging to the same CC ST-828, have not been recovered from 

pig isolates. As reported by Strachan (2009), even in rural areas with a high pig density, the 

presence of pigs does not seem to be associated with human infection. According to the 

PubMLST database, poultry other than chickens do not share any STs with pheasants, 

however, there may be the possibility of cross-contamination between these species, on-farm 

or at the estate. 



94 

 

This study also found a weak statistically significant association (P=0.012) between the 

prevalence of Campylobacter infection in pheasants and chicken density in Scotland. Chickens 

host 14 out of 16 STs found in pheasants, particularly ST828 that was the most common ST 

(24%) in pheasant isolates in this study. Furthermore, ST828 so far has been only recovered 

from chicken isolates on the PubMLST database as also reported in other studies conducted in 

Scotland (FSA 2009; Strachan et al., 2009; Rotariu et al., 2009) but has never been recovered 

from sheep. These findings seem to confirm those described by Sheppard (2010), who reported 

that poultry and ruminants (and not pigs and turkeys) are the most likely source of C. coli 

infection for other animal species and for humans in Scotland. 

Source attribution, as outlined in Table 5.3, has re-confirmed the prominent role that chickens, 

cattle and sheep have in human campylobacteriosis when infection from pets and human-to-

human transmission are not taken into consideration, as also reported in other studies 

(Sheppard et al, 2010; EFSA 2010; Humphrey et al., 2007). STs found in chickens in particular 

contributed to 10% of human clinical cases from the PubMLST database analysis but the 

contribution of chicken meat to human infection is thought to be as high as 30%, while 50-

80% may be attributed to the poultry reservoir as a whole (EFSA, 2010). This may be linked 

to the fact that most of the Campylobacter STs that are responsible for campylobacteriosis in 

humans are also carried by chickens.  Furthermore, human infections are mainly due to C. 

jejuni, which may reflect the prevalence of C. jejuni over C. coli in chickens.  For instance, a 

European level survey carried out in 2008 reported that two-thirds of Campylobacter isolates 

from pooled caecal contents of chickens and broiler carcasses were identified as C. jejuni, 

while one-third was C. coli (EFSA, 2008).  Another important factor to take into consideration 

in terms of human exposure to Campylobacter infection from chickens is the higher rate of 

poultry meat consumption per-capita that, in the UK in 2013, was almost double that of beef 

(31.2 Kgs compared to 17.3 Kgs) (EBLEX, 2014). As mentioned in section 1.1.3, the level of 

contamination of red meat at retail is substantially lower than poultry meat, possibly due to 

the longer time red meat spends chilled before entering the food chain and due to the 

deleterious effects of dehydration on Campylobacter (Humphrey et al., 2007). These two 

factors together tend to support the hypothesis that cattle and sheep are responsible for 

Campylobacter infection in humans more through direct contact with farm animals or their 

faeces or through consumption of contaminated water, rather than via food-borne sources. 

Farmed poultry other than chickens are a possible source of Campylobacter infection to 

humans. In the PubMLST database they were mainly carriers of ST45, but STs 21, 51, 137 

and 257 were also represented. The overall contribution to human infection was 1% so they 
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can be considered a lower risk to public health compared to chickens and other farm animal 

species. However, as also confirmed from a study carried out by ADAS (2007), they are 

carriers of CC ST-45 and ST-21 that are frequently associated with human campylobacteriosis. 

Consumer consumption of poultry meat other than chickens is increasing, therefore their role 

in human infections may become more prominent in the future (FSA, 2007). 

In this study it has been calculated that pheasants may contribute to 1% of human 

campylobacteriosis cases. Pheasants share 16 STs responsible for human clinical cases, 

although only eight STs are relatively frequent in human infections. The remaining STs are 

not very common in human clinical cases. This includes ST828 that was the most prevalent 

(24%) in positive pheasant samples and also recovered from chicken isolates on the PubMLST 

database yet only accounts for 0.2% of human cases. 

A more detailed analysis of the risk posed to humans from live pheasants and pheasant meat 

is undertaken in chapter 6. 

 

 

 

 

 

 

 

 

 

 

 

 



96 

 

Chapter 6 Conclusions and future studies  

 

Campylobacteriosis in humans, due to C. jejuni and C. coli, is the most common bacterial 

diarrhoeal disease worldwide (WHO, 2012). There are many studies investigating the role of 

poultry, cattle and sheep as reservoirs of Campylobacter infection in humans (EFSA, 2013) 

but, so far, very little has been done to investigate the role of other animal species that, 

although not a major source of infection to humans, may contribute to the maintenance of 

Campylobacter infection in wildlife and on farm land, and possibly even act as super-shedders 

of infection. 

The aim of this research project was to explore the role of wild pheasants as hosts of 

Campylobacter infection in Scotland and investigate the contribution that contact with live 

pheasants and pheasant meat may have on human infections. The presence and prevalence of 

Campylobacter spp. in pheasants has been reported in the literature but the sample size is often 

small in such reports and pheasants tend to originate from a single farm or shooting estate. 

This project was a much wider study and expanded to the whole of Scotland by sampling 

different Scottish regions and estates across the country with the purpose of not only estimating 

the prevalence of Campylobacter infection in wild pheasants but also performing a 

Campylobacter bacterial count from pheasant caecal content and skin, something not yet 

reported in the literature. The reason for choosing AGHEs as sampling sites and not farms or 

shooting estates was to try to establish if infection was present at that particular stage, since 

then it could serve as a possible source of meat contamination during processing and storage, 

thus potentially posing a risk to public health similar to that which occurs following 

consumption of Campylobacter contaminated poultry meat. A larger cross-sectional study 

extended to the entire pheasant supply chain (e.g. including pheasant farms and shooting 

estates) could help clarify the role played in terms of animal and human health by 

Campylobacter infection in pheasants in Scotland. 

Taxonomy classification places pheasants in the order of Galliformes, an order that also 

comprises chickens, turkeys, partridges and grouse. As such, one might conclude that 

pheasants behave like chickens as hosts of Campylobacter infection but this research project 

helped to demonstrate that this is not always the case. By performing an enumeration of 

Campylobacter colonies in positive caecal samples it was possible to confirm that pheasants, 

like chickens, can harbour high counts of Campylobacter CFU/g, comparable to those found 

in positive broiler flocks (Allen et al., 2011). As such, it was also possible to hypothesise a 
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possible role for pheasants as “super-shedders” of Campylobacter, helping in the recycling 

and persistence of Campylobacter infection on farm land and among farm animal species. 

More studies need to be carried out to determine if Campylobacter spp. in pheasants may have 

super-shedding features, such as those previously reported for E. coli and Salmonella spp. 

(Chase-Topping et al., 2008). 

Another aspect that this study partially helped to clarify is the effect of kill-to-process time on 

Campylobacter loads.  Review of previous literature suggested that, due to the strict growth 

requirements of Campylobacter spp., there was a decline in Campylobacter carriage in 

pheasants as the kill-to-process time increased (Nebola et al., 2007). In this study there was 

no statistically significant difference in the relationship between Campylobacter load in 

positive caecal samples and kill-to-process time and some non-eviscerated pheasants carried 

high Campylobacter loads even at 7 days from the day of kill when compared to the average 

load of infection.  However, this findings are only based on samples taken in one point in time 

and not over time. Storage temperature, number of days stored and location of shot wounds, 

especially if the intestine is perforated, are important factors that can influence Campylobacter 

growth and survival in non-eviscerated pheasants (Paulsen at al., 2008). More specific studies 

need to be performed to study the survival of Campylobacter spp. in caecal samples over time 

and in the context of the kill-to-process time period. 

A comparison of the prevalence of Campylobacter infection in chickens and pheasants is 

difficult to make, mostly because of the different husbandry systems of these species where 

chickens are usually intensively reared while wild pheasants are not. However, it has been 

reported that free range chicken flocks that have access to the outdoors have a higher level of 

Campylobacter infection than flocks kept exclusively indoors (Heuer et al., 2001). As such, 

the prevalence of Campylobacter infection in broiler flocks has been reported to vary from 0% 

(Campylobacter free flocks) over 80% (Allen et al., 2007).  Considering the results of this 

study and previously reported surveys in combination, the prevalence of Campylobacter 

infection in wild pheasants seems to be consistently in the range of 25 to 38%. In this study, 

however, the level of Campylobacter infection in pheasants could have been even higher 

(46%) if the results from sampling site 5 had been excluded.  Sampling site 5 had a 

significantly lower prevalence compared to the other sampling sites, considered to be due to a 

seasonal influence on infection levels.  More studies would be required to verify if a seasonal 

pattern of Campylobacter carriage is actually present in pheasants, as reported in other farm 

animal species (Stanley et al., 1998a). 
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Molecular epidemiology of Campylobacter spp. identified another important difference 

between pheasants and chickens: Two thirds of pheasants seem to be carriers of C. coli rather 

than C. jejuni, while in chickens it is the other way round. This is important not only in terms 

of host association but also in terms of possible transmission of infection to humans. 

Polymerase Chain Reaction and MLST were not performed on all pheasant isolates recovered 

from this study due to funding limitations. Evaluation of all samples may have given a better 

indication of the prevalence of C. coli and C. jejuni in pheasants and also the level of co-

infections, as previously reported in the literature (Dipineto et al., 2008a). This study also 

identified three STs that were not associated with human, farm animal or wild bird isolates on 

the PubMLST database. A phylogenetic analysis of these STs was not performed as it was 

outside the scope of this project but such an analysis could perhaps promote our understanding 

of their evolutionary origin and their association with different animal species, as well as 

helping  to predict the likelihood of their posing a future threat to public health (EFSA, 2013). 

Molecular typing of Campylobacter spp. showed that CC ST-828 is the most common in 

pheasants but in Scotland this is not the case in all geographical areas. In fact, in Aberdeenshire 

C. jejuni CCs seem to be the more prominent as also reported by Forbes (2009). It also showed 

that it is very likely that pheasants will acquire Campylobacter infection mainly from cattle, 

sheep and chickens rather than from pigs, turkeys or wild birds, as supported by other studies 

(Sheppard et al., 2010). This also suggests at present that it is unlikely that pheasants can be 

considered a reservoir of infection but rather a host with potentially super-shedder features. 

Chickens in particular, are the exclusive host and carry several STs that are associated with 

human infections, according to the PubMLST database. They can be considered to be the 

specific host since it is very unlikely that the transmission of infection to chickens could 

originate from humans due to the overall very low level of exposure of live chickens to 

humans. The same could be said for pheasants, where their level of exposure to Campylobacter 

infection from cattle, sheep and chickens is much greater than vice versa. More specific studies 

need to be carried out to clarify the role of pheasants as a reservoir or as a host of 

Campylobacter infection for other farm animals and for humans. 

The vast majority of human campylobacteriosis cases are associated with C. jejuni and this 

tends to give an indication that pheasants are a lower risk for transmission of Campylobacter 

infection to humans. Other factors could also contribute to reduce the risk of transmission of 

Campylobacter infection to humans from pheasants and they are briefly outlined below: 

• Human exposure to live pheasants and their meat products is restricted to gamekeepers 

and pheasant farm workers that are in direct contact to these animals, and consumers 
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who enjoy game meat. Although an outbreak of campylobacteriosis in pheasant farm 

workers has been reported in the literature (Heryford and Seys, 2004), it can be 

considered as an occupational disease and could be prevented by applying strict 

biosecurity and hygiene rules, as in all other farm animal activities. 

• The consumption per-capita in the UK of pheasant meat can be considered very low 

compared to chicken and beef and can be estimated to be 5g per person per year. 

However, results from this study suggest that consumption of pheasant meat, together 

with direct contact transmission of infection from live birds, can potentially account 

for 1% of human campylobacteriosis cases. This can be translated to a total cost to the 

UK of approximately £5,000,000 per annum, affecting around 6,500 people. At 

present there is no record of any foodborne disease case that can be definitively traced 

back to consumption of pheasant meat (PACEC, 2006) and only one outbreak was 

reported in the US in humans from direct contact with live pheasants on a pheasant 

farm (Heryford and Seys, 2004). However, there is evidence that this food is meeting 

an increasing consumer demand so a risk assessment of human exposure to 

Campylobacter infection through pheasant game meat should be reviewed in the 

future as for meat from farmed poultry other than chickens (FSA, 2007).  

• Although this study demonstrated in section 3.4 that Campylobacter can survive at 

high counts up to seven days from the date of kill in pheasant caecal content, the 

chances of contamination of meat during processing and survival of Campylobacter 

spp. on pheasant meat could be reduced by applying strict HACCP controls on 

hygienic production (VLA, 2003; ACMSF, 2005) and a close control of the cold chain 

since dry and cold conditions are deleterious to Campylobacter survival (Allen et al., 

2006). In this study, no Campylobacter growth was observed in all skin samples tested 

as also reported previously in the literature (Soncini et al., 2006), suggesting that dry 

and cold conditions are not ideal for Campylobacter survival outside the 

gastrointestinal tract. Dry plucking of pheasants also helps to reduce the moisture 

content on pheasant skin during processing compared to broilers where birds are 

submerged in hot water in scalding tanks before plucking (Allen et al., 2006; Hayama 

et al., 2011). 

• Pheasant meat is available to consumers in restaurants, butcher shops and 

supermarkets mainly in winter time during the hunting season (October to February) 

and this does not coincide with the peak in human campylobacteriosis cases (Figure 

1.2); usually the notification rates in these months is decreasing or very low, giving 

an indication that the higher consumption of pheasant meat in these months, even if it 
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is posing a potential risk to public health, does not statistically contribute to an increase 

of Campylobacter infection in humans. Pheasant meat that is available to consumers 

all year around is generally stored frozen and, since there is evidence in the literature 

that freezing is detrimental to Campylobacter survival in food (Harrison et al., 2013), 

the risk to public health is reduced. Regardless, consumers, restaurants and pubs 

should always be advised to cook meat thoroughly, in order to prevent any risk of 

infection through food. 

Based on these findings, the risk to public health from live pheasants and pheasant meat 

at the present time can be considered to be low. However, consumer consumption of 

pheasant meat is increasing, therefore its role in human infections may become more 

prominent in the future, with the potential to have a substantial impact as a foodborne 

source of Campylobacter infection for humans. 
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